Abstract:
The molecular dynamics study of the rearrangement of the dynamic hydrogen bond network of liquid water to the crystal hydrogen bond network of methane hydrate in the process of their formation and growth is conducted. To reveal the nature of nucleation, the time dependences of the degree of “crystallinity” of the nearest environment of all water molecules, the rate of ordering of the hydrogen bond network, and the relation of these parameters to the rate of growth of methane hydrate are studied. The effect of the presence of sea salt ions and hydrate seed on these parameters is analyzed. Systems with a completely mixed gas, i.e., with the minimum induction time, are fabricated, and it is shown that gas hydrates can be nucleated simultaneously in the entire volume of the solution, which in turn indicates the collective formation of hydrates from liquid solution.
Центр Вычислительного Материаловедения Института Исследования Материалов в Университете Тохоку
2012SC0504
This work was supported by the Russian Foundation for Basic Research (project no. 21-52-52001) jointly with the Ministry of Science and Technology of Taiwan (grant no. 110-2923-E-002-008-MY3).
Citation:
V. R. Belosludov, K. V. Gets, R. K. Zhdanov, Yu. Yu. Bozhko, R. V. Belosludov, L.-J. Chen, “Collective effect of transformation of a hydrogen bond network at the initial state of growth of methane hydrate”, Pis'ma v Zh. Èksper. Teoret. Fiz., 115:3 (2022), 144–149; JETP Letters, 115:3 (2022), 124–129
\Bibitem{BelGetZhd22}
\by V.~R.~Belosludov, K.~V.~Gets, R.~K.~Zhdanov, Yu.~Yu.~Bozhko, R.~V.~Belosludov, L.-J.~Chen
\paper Collective effect of transformation of a hydrogen bond network at the initial state of growth of methane hydrate
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2022
\vol 115
\issue 3
\pages 144--149
\mathnet{http://mi.mathnet.ru/jetpl6598}
\crossref{https://doi.org/10.31857/S1234567822030028}
\transl
\jour JETP Letters
\yr 2022
\vol 115
\issue 3
\pages 124--129
\crossref{https://doi.org/10.1134/S0021364022030031}
Linking options:
https://www.mathnet.ru/eng/jetpl6598
https://www.mathnet.ru/eng/jetpl/v115/i3/p144
This publication is cited in the following 9 articles:
M.Sh. Madygulov, V.A. Vlasov, Chemical Engineering Research and Design, 202 (2024), 267
K. V. Gets, R. K. Zhdanov, Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov, J. Engin. Thermophys., 33:2 (2024), 365
Rodion V. Belosludov, Kirill V. Gets, Ravil K. Zhdanov, Yulia Y. Bozhko, Vladimir R. Belosludov, JMSE, 12:9 (2024), 1626
Rodion V. Belosludov, Kirill V. Gets, Ravil K. Zhdanov, Yulia Y. Bozhko, Vladimir R. Belosludov, Li-Jen Chen, Yoshiyuki Kawazoe, Molecules, 28:7 (2023), 2960
R. K. Zhdanov, K. V. Gets, Yu. Yu. Bozhko, O. O. Subboting, V. R. Belosludov, J. Engin. Thermophys., 32:2 (2023), 312
V. G. Luk'yanchuk, A. V. Lankin, G. E. Norman, JETP Letters, 118:8 (2023), 597–602
Yogendra Kumar, Jitendra S. Sangwai, Energy Fuels, 37:13 (2023), 8739
K. V. Gets, R. K. Zhdanov, Y. Y. Bozhko, O. S. Subbotin, V. R. Belosludov, J. Engin. Thermophys., 32:3 (2023), 502
M. B. Yunusov, R. M. Khusnutdinov, J Struct Chem, 64:4 (2023), 584