Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2022, Volume 115, Issue 2, Pages 110–116
DOI: https://doi.org/10.31857/S1234567822020082
(Mi jetpl6594)
 

This article is cited in 12 scientific papers (total in 12 papers)

CONDENSED MATTER

On the nature of the excess internal energy and entropy of metallic glasses

A. S. Makarova, M. A. Kretovaa, G. V. Afonina, J. C. Qiaob, A. M. Glezerac, N. P. Kobelevd, V. A. Khonika

a Voronezh State Pedagogical University, Voronezh, 394043 Russia
b School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, 710072 People's Republic of China
c National University of Science and Technology MISiS, Moscow, 119049 Russia
d Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
References:
Abstract: The excess internal energies ΔUQ and excess entropies ΔSQ of ten metallic glasses with respect to their parent crystalline states are determined from calorimetric studies. The elastic energy ΔUel of the subsystem of interstitial defects responsible for relaxation phenomena in metallic glasses according to interstitialcy theory is calculated within this theory using the measured high-frequency shear modulus. It is established that the quantities ΔUQ and ΔUel coincide with each other within an accuracy of no less than 1015%. It is concluded that the excess internal energy and excess entropy of metallic glasses are due primarily to the elastic energy of the subsystem of interstitial defects. The dissipation of this energy into heat under heating reduces ΔUQ and ΔSQ to zero because of the complete crystallization. The entropy per defect is estimated from calorimetric data as Sd2030kB, which is characteristic of interstitial defects.
Funding agency Grant number
Russian Science Foundation 20-62-46003
This work was supported by the Russian Science Foundation (project no 20-62-46003).
Received: 11.11.2021
Revised: 29.11.2021
Accepted: 29.11.2021
English version:
Journal of Experimental and Theoretical Physics Letters, 2022, Volume 115, Issue 2, Pages 102–107
DOI: https://doi.org/10.1134/S0021364022020072
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Makarov, M. A. Kretova, G. V. Afonin, J. C. Qiao, A. M. Glezer, N. P. Kobelev, V. A. Khonik, “On the nature of the excess internal energy and entropy of metallic glasses”, Pis'ma v Zh. Èksper. Teoret. Fiz., 115:2 (2022), 110–116; JETP Letters, 115:2 (2022), 102–107
Citation in format AMSBIB
\Bibitem{MakKreAfo22}
\by A.~S.~Makarov, M.~A.~Kretova, G.~V.~Afonin, J.~C.~Qiao, A.~M.~Glezer, N.~P.~Kobelev, V.~A.~Khonik
\paper On the nature of the excess internal energy and entropy of metallic glasses
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2022
\vol 115
\issue 2
\pages 110--116
\mathnet{http://mi.mathnet.ru/jetpl6594}
\crossref{https://doi.org/10.31857/S1234567822020082}
\transl
\jour JETP Letters
\yr 2022
\vol 115
\issue 2
\pages 102--107
\crossref{https://doi.org/10.1134/S0021364022020072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000780909000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127747966}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6594
  • https://www.mathnet.ru/eng/jetpl/v115/i2/p110
  • This publication is cited in the following 12 articles:
    1. R.S. Khmyrov, A.S. Makarov, J.C. Qiao, N.P. Kobelev, V.A. Khonik, Materials Chemistry and Physics, 332 (2025), 130184  crossref
    2. G. N. Makarov, Phys. Usp., 67:1 (2024), 44–54  mathnet  mathnet  crossref  crossref  scopus
    3. A.S. Makarov, G.V. Afonin, R.A. Konchakov, V.A. Khonik, J.C. Qiao, A.N. Vasiliev, N.P. Kobelev, Scripta Materialia, 239 (2024), 115783  crossref
    4. G. V. Afonin, J. C. Qiao, A. S. Makarov, R. A. Konchakov, E. V. Goncharova, N. P. Kobelev, V. A. Khonik, Applied Physics Letters, 124:15 (2024)  crossref
    5. R. A. Konchakov, A. S. Makarov, G. V. Afonin, J. C. Qiao, N. P. Kobelev, V. A. Khonik, JETP Letters, 119:6 (2024), 458–463  mathnet  crossref  crossref
    6. S.A. Uporov, V.A. Bykov, L.A. Cherepanova, Intermetallics, 173 (2024), 108420  crossref
    7. A.S. Makarov, J.B. Cui, J.C. Qiao, G.V. Afonin, N.P. Kobelev, V.A. Khonik, Intermetallics, 175 (2024), 108478  crossref
    8. A. S. Makarov, R. A. Konchakov, G. V. Afonin, Ts. Ch. Tsziao, N. P. Kobelev, V. A. Khonik, Pisma v ZhETF, 120:10 (2024), 794–801  mathnet  crossref
    9. A. S. Makarov, R. A. Konchakov, G. V. Afonin, J. C. Qiao, N. P. Kobelev, V. A. Khonik, Jetp Lett., 120:10 (2024), 759  crossref
    10. N. P. Kobelev, V. A. Khonik, Phys. Usp., 66:7 (2023), 673–690  mathnet  crossref  crossref  adsnasa  isi
    11. A.S. Makarov, G.V. Afonin, R.A. Konchakov, J.C. Qiao, A.N. Vasiliev, N.P. Kobelev, V.A. Khonik, Intermetallics, 163 (2023), 108041  crossref
    12. R.A. Konchakov, A.S. Makarov, G.V. Afonin, J.C. Qiao, M.G. Vasin, N.P. Kobelev, V.A. Khonik, Journal of Non-Crystalline Solids, 619 (2023), 122555  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :12
    References:29
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025