Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2022, Volume 115, Issue 1, Pages 59–64
DOI: https://doi.org/10.31857/S1234567822010104
(Mi jetpl6586)
 

This article is cited in 1 scientific paper (total in 1 paper)

METHODS OF THEORETICAL PHYSICS

Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type-a multi-string theory

O. S. Chekeresa, A. S. Losevbcd, P. N. Mnevef, D. R. Youmansg

a Department of Mathematics, University of Connecticut, Storrs, CT 06269 USA
b Laboratory of Mirror Symmetry, National Research University Higher School of Economics, Moscow, 119048 Russia
c Federal Science Centre Science Research Institute of System Analysis, Russian Academy of Sciences (GNU FNC NIISI RAN), Moscow, 117218 Russia
d Wu Wen-Tsun Key Lab of Mathematics, Chinese Academy of Sciences, USTC, Hefei, Anhui, 230026 People’s Republic of China
e University of Notre Dame, Notre Dame, IN 46556 USA
f St. Petersburg Department, Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, 191023 Russia
g Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Bern, 3012 Switzerland
References:
Abstract: We study the field theory localizing to holomorphic maps from a complex manifold of complex dimension $2$ to a toric target (a generalization of A model). Fields are realized as maps to ${{(\mathbb{C}\text{*})}^{N}}$ where one includes special observables supported on $(1,1)$-dimensional submanifolds to produce maps to the toric compactification. We study the mirror of this model. It turns out to be a free theory interacting with ${{N}_{{{\text{comp}}}}}$ topological strings of type A. Here, ${{N}_{{{\text{comp}}}}}$ is the number of compactifying divisors of the toric target. Before the mirror transformation, these strings are vortex (actually, holomortex) strings.
Funding agency Grant number
HSE Basic Research Program
Ministry of Science and Higher Education of the Russian Federation FNEF-2021-0007
Swiss National Science Foundation
A.S. Losev acknowledges the support of the HSE University Basic Research Program and the System Research Institute, Russian Academy of Science (state program FNEF-2021-0007). D.R. Youmans acknowledges the support of the National Centre of Competence in Research SwissMAP, Swiss National Science Foundation.
Received: 13.11.2021
Revised: 19.11.2021
Accepted: 20.11.2021
English version:
Journal of Experimental and Theoretical Physics Letters, 2022, Volume 115, Issue 1, Pages 52–57
DOI: https://doi.org/10.1134/S0021364022010027
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. S. Chekeres, A. S. Losev, P. N. Mnev, D. R. Youmans, “Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type-a multi-string theory”, Pis'ma v Zh. Èksper. Teoret. Fiz., 115:1 (2022), 59–64; JETP Letters, 115:1 (2022), 52–57
Citation in format AMSBIB
\Bibitem{CheLosMne22}
\by O.~S.~Chekeres, A.~S.~Losev, P.~N.~Mnev, D.~R.~Youmans
\paper Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type-a multi-string theory
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2022
\vol 115
\issue 1
\pages 59--64
\mathnet{http://mi.mathnet.ru/jetpl6586}
\crossref{https://doi.org/10.31857/S1234567822010104}
\transl
\jour JETP Letters
\yr 2022
\vol 115
\issue 1
\pages 52--57
\crossref{https://doi.org/10.1134/S0021364022010027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734700200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121730163}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6586
  • https://www.mathnet.ru/eng/jetpl/v115/i1/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024