Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2021, Volume 114, Issue 6, Pages 360–364
DOI: https://doi.org/10.31857/S123456782118004X
(Mi jetpl6509)
 

This article is cited in 8 scientific papers (total in 8 papers)

OPTICS AND NUCLEAR PHYSICS

Optimization of multilayer photonic structures using artificial neural networks to obtain a target optical response

K. R. Safronov, V. O. Bessonov, A. A. Fedyanin

Faculty of Physics, Moscow State University, Moscow, 119991 Russia
References:
Abstract: A new deep machine learning method is proposed for the task of selecting the parameters of a multilayer photonic structure to obtain a target optical spectrum of the reflection coefficient. The proposed training method is based on the connection of an artificial neural network for solving the inverse problem and the analytical transfer matrix method. This approach allows achieving high accuracy of the network. The developed method can be applied to the design of a structure that takes the derivative of the coordinate for an incident optical signal.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 14.W03.008.31
075-15-2020-801
Russian Foundation for Basic Research 19-32-90225
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 14.W03.008.31, development of an optical differentiator, and project no. 075-15-2020-801, development of a neural network), by the Russian Foundation for Basic Research (project no. 19-32-90225, development of an optimized transfer matrix method), and in part by the Quantum Technology Center, Moscow State University and the nonprofit Foundation for the Development of Science and Education Intelligence.
Received: 11.08.2021
Revised: 12.08.2021
Accepted: 12.08.2021
English version:
Journal of Experimental and Theoretical Physics Letters, 2021, Volume 114, Issue 6, Pages 321–325
DOI: https://doi.org/10.1134/S0021364021180119
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. R. Safronov, V. O. Bessonov, A. A. Fedyanin, “Optimization of multilayer photonic structures using artificial neural networks to obtain a target optical response”, Pis'ma v Zh. Èksper. Teoret. Fiz., 114:6 (2021), 360–364; JETP Letters, 114:6 (2021), 321–325
Citation in format AMSBIB
\Bibitem{SafBesFed21}
\by K.~R.~Safronov, V.~O.~Bessonov, A.~A.~Fedyanin
\paper Optimization of multilayer photonic structures using artificial neural networks to obtain a target optical response
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2021
\vol 114
\issue 6
\pages 360--364
\mathnet{http://mi.mathnet.ru/jetpl6509}
\crossref{https://doi.org/10.31857/S123456782118004X}
\transl
\jour JETP Letters
\yr 2021
\vol 114
\issue 6
\pages 321--325
\crossref{https://doi.org/10.1134/S0021364021180119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000720819500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120649955}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6509
  • https://www.mathnet.ru/eng/jetpl/v114/i6/p360
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :5
    References:26
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024