Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2020, Volume 112, Issue 6, Pages 388–393
DOI: https://doi.org/10.31857/S1234567820180111
(Mi jetpl6261)
 

This article is cited in 3 scientific papers (total in 3 papers)

METHODS OF THEORETICAL PHYSICS

Mirror pairs of quintic orbifolds

A. A. Belavinabc, B. A. Eremindcba

a Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127994 Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow region, 141700 Russia
d Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Moscow region, 143025 Russia
Full-text PDF (156 kB) Citations (3)
References:
Abstract: Two constructions of mirror pairs of Calabi-Yau manifolds are compared by example of quintic orbifolds $\mathcal{Q}$ . The first, Berglund–Hubsch–Krawitz, construction is as follows. If $X$ is the factor of the hypersurface $\mathcal{Q}$ by a certain subgroup $H'$ of the maximum allowed group $SL$, the mirror manifold $Y$ is defined as the factor by the dual subgroup ${H'}^{T}$. In the second, Batyrev, construction, the toric manifold $T$ containing the mirror $Y$ as a hypersurface specified by zeros of the polynomial $W_Y$ is determined from the properties of the polynomial $W_X$ specifying the Calabi-Yau manifold $X$. The polynomial $W_Y$ is determined in an explicit form. The group of symmetry of the polynomial $W_Y$ is found from its form and it is tested whether it coincides with that predicted by the Berglund–Hubsch–Krawitz construction.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0033-2019-0004
Russian Science Foundation 18-12-00439
This work was performed at the Landau Institute for Theoretical Physics, Russian Academy of Sciences. A. Belavin acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 0033-2019-0004). B. Eremin acknowledges the support of the Russian Science Foundation (project no. 18-12-00439).
Received: 03.09.2020
Revised: 03.09.2020
Accepted: 03.09.2020
English version:
Journal of Experimental and Theoretical Physics Letters, 2020, Volume 112, Issue 6, Pages 370–375
DOI: https://doi.org/10.1134/S002136402018006X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Belavin, B. A. Eremin, “Mirror pairs of quintic orbifolds”, Pis'ma v Zh. Èksper. Teoret. Fiz., 112:6 (2020), 388–393; JETP Letters, 112:6 (2020), 370–375
Citation in format AMSBIB
\Bibitem{BelEre20}
\by A.~A.~Belavin, B.~A.~Eremin
\paper Mirror pairs of quintic orbifolds
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2020
\vol 112
\issue 6
\pages 388--393
\mathnet{http://mi.mathnet.ru/jetpl6261}
\crossref{https://doi.org/10.31857/S1234567820180111}
\elib{https://elibrary.ru/item.asp?id=45128689}
\transl
\jour JETP Letters
\yr 2020
\vol 112
\issue 6
\pages 370--375
\crossref{https://doi.org/10.1134/S002136402018006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000593001500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096561089}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6261
  • https://www.mathnet.ru/eng/jetpl/v112/i6/p388
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :20
    References:23
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024