Abstract:
Quantum tomography is the most informative tool for estimating the quality of preparation and transformation of quantum states. Its development is crucially necessary for debugging of developed quantum processors. Many existing methods of quantum tomography differ in types of performed measurements and in procedures of their processing. The practical implementation of quantum tomography requires the comparison of different methods, which is complicated because of the absence of a general methodology of estimation. A universal methodology based on numerical experiments has been proposed in this work to estimate the quality of quantum state tomography methods. The developed methodology has been applied to three quantum tomography methods (root approach, compressed sensing, and adaptive tomography) efficiently operating with almost pure states, which is relevant for the current technological foundation of the experiments.
The investigation was supported by Program of the Ministry of Science and Higher Education of Russia
(no. 0066-2019-0005) for Valiev Institute of Physics and Technology of RAS.
Citation:
B. I. Bantysh, A. Yu. Chernyavskiy, Yu. I. Bogdanov, “Comparison of tomography methods for pure and almost pure quantum states”, Pis'ma v Zh. Èksper. Teoret. Fiz., 111:9 (2020), 615–622; JETP Letters, 111:9 (2020), 512–518
\Bibitem{BanCheBog20}
\by B.~I.~Bantysh, A.~Yu.~Chernyavskiy, Yu.~I.~Bogdanov
\paper Comparison of tomography methods for pure and almost pure quantum states
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2020
\vol 111
\issue 9
\pages 615--622
\mathnet{http://mi.mathnet.ru/jetpl6165}
\crossref{https://doi.org/10.31857/S1234567820090074}
\elib{https://elibrary.ru/item.asp?id=45417165}
\transl
\jour JETP Letters
\yr 2020
\vol 111
\issue 9
\pages 512--518
\crossref{https://doi.org/10.1134/S0021364020090052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548633900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087963029}
Linking options:
https://www.mathnet.ru/eng/jetpl6165
https://www.mathnet.ru/eng/jetpl/v111/i9/p615
This publication is cited in the following 9 articles:
Yuan Shi, Kristin M. Beck, Veronika Anneliese Kruse, Stephen B. Libby, Phys. Rev. A, 110:6 (2024)
B. I. Bantysh, K. G. Katamadze, Yu. I. Bogdanov, K. I. Gerasimov, M. M. Minnegaliev, R. V. Urmancheev, S. A. Moiseev, JETP Letters, 116:1 (2022), 29–35
Yurii I. Bogdanov, Nadejda A. Bogdanova, Dmitriy V. Fastovets, Vladimir F. Lukichev, Konstantin V. Rudenko, Vladimir F. Lukichev, International Conference on Micro- and Nano-Electronics 2021, 2022, 53
B. I. Bantysh, Yu. I. Bogdanov, Laser Phys. Lett., 18:1 (2021), 015203
Yu. I. Bogdanov, N. A. Bogdanova, D. V. Fastovets, V. F. Lukichev, JETP Letters, 114:6 (2021), 354–361
N. V. Semenin, A. S. Borisenko, I. V. Zalivako, I. A. Semerikov, K. Yu. Khabarova, N. N. Kolachevsky, JETP Letters, 114:8 (2021), 486–492
B. I. Bantysh, A. Yu. Chernyavskiy, Yu. I. Bogdanov, Quantum Inf. Process., 20:10 (2021), 339
A. Czerwinski, Acta Phys. Pol. A, 139:6 (2021), 666–672
G. A. Bochkin, S. G. Vasil'ev, A. V. Fedorova, E. B. Fel'dman, JETP Letters, 112:11 (2020), 715–719