Abstract:
Ferrihydrite nanoparticles ($2$–$3$ nm in size), which are products of the vital activity of microorganisms, are studied by the ferromagnetic resonance method. The “core” of ferrihydrite particles is ordered antiferromagnetically, and the presence of defects leads to the appearance of an uncompensated magnetic moment in nanoparticles and the characteristic superparamagnetic behavior. It is established from the ferromagnetic resonance data that the field dependence of the frequency is described by the expression $2\pi\nu/\gamma = H_{\text{R}} + H^{\text{A}}_{(T = 0)}(1-T/T^*)$, where $\gamma$ is the gyromagnetic ratio, $H_{\text{R}}$ is the resonance field, $H_{\text{A}}\approx7\,$kOe, and $T^*\approx50\,$K. The induced anisotropy $H^{\text{A}}$ is due to the spin-glass state of the near-surface regions.
This work was supported by the Russian Foundation for Basic Research, by the Government of Krasnoyarsk krai, by
the Krasnoyarsk Regional Fund for the Support of Scientific and Technical Activities (project no. 19-42-240012 r_a
“Magnetic Resonance in Ferrihydrite Nanoparticles: Effects Associated with the Core–Shell Structure”), and by
the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific
Schools (project no. MK-1263.2020.3).
Citation:
S. V. Stolyar, D. A. Balaev, V. P. Ladygina, A. I. Pankrats, R. N. Yaroslavtsev, D. A. Velikanov, R. S. Iskhakov, “Ferromagnetic resonance study of biogenic ferrihydrite nanoparticles: spin-glass state of surface spins”, Pis'ma v Zh. Èksper. Teoret. Fiz., 111:3 (2020), 197–202; JETP Letters, 111:3 (2020), 183–187
This publication is cited in the following 19 articles:
Dmitry A. Balaev, Aleksandr A. Krasikov, Yuriy V. Knyazev, Roman N. Yaroslavtsev, Dmitry A. Velikanov, Yuriy L. Mikhlin, Mikhail N. Volochaev, Oleg A. Bayukov, Valentina P. Ladygina, Sergei V. Stolyar, Rauf S. Iskhakov, Nano-Structures & Nano-Objects, 37 (2024), 101089
S. V. Stolyar, O. A. Li, A. M. Vorotynov, D. A. Velikanov, N. G. Maksimov, R. S. Iskhakov, V. P. Ladygina, A. O. Shokhrina, Bull. Russ. Acad. Sci. Phys., 88:4 (2024), 536
Yu. V. Knyazev, D. A. Balaev, S. A. Skorobogatov, D. A. Velikanov, O. A. Bayukov, S. V. Stolyar, V. P. Ladygina, A. A. Krasikov, R. S. Iskhakov, Phys. Metals Metallogr., 125:4 (2024), 377
S. V. Stolyar, E. D. Nikolaeva, O. A. Li, D. A. Velikanov, A. M. Vorotynov, V. F. Pyankov, V. P. Ladygina, A. L. Sukhachev, D. A. Balaev, R. S. Iskhakov, Inorg. Mater. Appl. Res., 15:4 (2024), 927
Yu. V. Knyazev, D. A. Balaev, S. A. Skorobogatov, D. A. Velikanov, O. A. Bayukov, S. V. Stolyar, V. P. Ladygina, A. A. Krasikov, R. S. Iskhakov, Fizika metallov i metallovedenie, 125:4 (2024), 420
S. V. Stolyar, O. A. Li, A. M. Vorotynov, D. A. Velikanov, N. G. Maksimov, R. S. Iskhakov, V. P. Ladygina, A. O. Shokhrina, Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ, 88:4 (2024), 623
Yuriy V. Knyazev, Viktor L. Kirillov, Aleksandr A. Krasikov, Stanislav A. Skorobogatov, Dmitry A. Velikanov, Mikhail N. Volochaev, Ekaterina D. Smorodina, Oleg A. Bayukov, Oleg N. Martyanov, Dmitry A. Balaev, Ceramics International, 2024
A. A Krasikov, D. A Balaev, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 163:1 (2023), 115
A. A. Krasikov, D. A. Balaev, J. Exp. Theor. Phys., 136:1 (2023), 97
Yu. V. Knyazev, D. A. Balaev, S. V. Stolyar, O. A. Bayukov, R. N. Yaroslavtsev, V. P. Ladygina, D. A. Velikanov, R. S. Iskhakov, J. Alloy. Compd., 851 (2021), 156753
S. V. Stolyar, O. V. Kryukova, R. N. Yaroslavtsev, O. A. Bayukov, Yu. V. Knyazev, Yu. V. Gerasimova, V. F. Pyankov, N. V. Latyshev, N. P. Shestakov, AIP Adv., 11:1 (2021), 015019
D. A. Balaev, A. A. Krasikov, S. I. Popkov, S. V. Semenov, M. N. Volochaev, D. A. Velikanov, V. L. Kirillov, O. N. Martyanov, J. Magn. Magn. Mater., 539 (2021), 168343
Balaev D.A. Krasikov A.A. Popkov I S. Dubrovskiy A.A. Semenov V S. Velikanov D.A. Kirillov V.L. Martyanov O.N., J. Magn. Magn. Mater., 515 (2020), 167307