Abstract:
The spin-wave stiffness of a ferromagnetic microwire in the form of an amorphous Fe77.5Si5.5B15 strand with a diameter of 10μm in a glass shell has been measured by the method of small-angle scattering of polarized neutrons. According to the quadratic dispersion relation for the ferromagnet, neutron scattering by spin waves is concentrated inside a cone with a cutoff angle θC. The cutoff angle θC has been determined by comparing the antisymmetric contribution to the intensity of scattering of polarized neutrons and a model function for a magnetic field H varied from 3.40 to 41 mT. The cutoff angle θC decreases according to the formula θ2C(H)=θ20−(gμBH+Δ)θ0/Ei, where θ0=ℏ2/(2Amn). The stiffness of spin waves and the energy gap in the spectrum of spin waves in the Fe77.5Si5.5B15 ferromagnetic microwire at room temperature determined from the field dependence are meV θ2C(H)
are A=82(3) meV Å2 and Δ=0.048(2) meV, respectively. It has been shown that this method for the measurement of the stiffness of spin waves can be successfully used in compact (with low and moderate fluxes) pulsed neutron sources based on accelerators.
Citation:
S. V. Grigoriev, K. A. Pshenichnyi, I. A. Baraban, V. V. Rodionova, K. A. Chichai, A. Heinemann, “Measurement of the stiffness of spin waves in amorphous ferromagnetic microwires by the small-angle neutron scattering method”, Pis'ma v Zh. Èksper. Teoret. Fiz., 110:12 (2019), 799–805; JETP Letters, 110:12 (2019), 793–798
\Bibitem{GriPshBar19}
\by S.~V.~Grigoriev, K.~A.~Pshenichnyi, I.~A.~Baraban, V.~V.~Rodionova, K.~A.~Chichai, A.~Heinemann
\paper Measurement of the stiffness of spin waves in amorphous ferromagnetic microwires by the small-angle neutron scattering method
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2019
\vol 110
\issue 12
\pages 799--805
\mathnet{http://mi.mathnet.ru/jetpl6070}
\crossref{https://doi.org/10.1134/S0370274X19240068}
\elib{https://elibrary.ru/item.asp?id=43252210}
\transl
\jour JETP Letters
\yr 2019
\vol 110
\issue 12
\pages 793--798
\crossref{https://doi.org/10.1134/S0021364019240056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000518545300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081017661}
Linking options:
https://www.mathnet.ru/eng/jetpl6070
https://www.mathnet.ru/eng/jetpl/v110/i12/p799
This publication is cited in the following 8 articles:
K. A. Pavlov, N. A. Kovalenko, L. A. Azarova, E. A. Kravtsov, T. V. Kulevoy, S. V. Grigoriev, Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2023, no. 7, 84
S. V Grigor'ev, L. A Azarova, K. A Pshenichnyy, O. I Utesov, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 164:4 (2023), 538
K. A. Pavlov, N. A. Kovalenko, L. A. Azarova, E. A. Kravtsov, T. V. Kulevoy, S. V. Grigoryev, J. Surf. Investig., 17:4 (2023), 810
S. V. Grigoriev, L. A. Azarova, K. A. Pshenichnyi, O. I. Utesov, J. Exp. Theor. Phys., 137:4 (2023), 463
Grigoriev V S., Altynbaev V E., Pshenichnyi K.A., Crystallogr. Rep., 67:1 (2022), 81–92
K. A. Pavlov, P. I. Konik, N. A. Kovalenko, T. V. Kulevoy, D. A. Serebrennikov, V. V. Subbotina, A. E. Pavlova, S. V. Grigorev, Crystallogr. Rep., 67:1 (2022), 3
L. A. Azarova, R. M. Vinogradov, K. A. Pshenichniy, S. V. Grigoriev, J. Surf. Investig., 16:6 (2022), 1253