Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2019, Volume 110, Issue 9, Pages 579–583
DOI: https://doi.org/10.1134/S0370274X1921001X
(Mi jetpl6031)
 

FIELDS, PARTICLES, AND NUCLEI

Diffraction enhancement of the Stern–Gerlach effect for a neutron in a crystal

V. V. Voroninabc, S. Yu. Semenikhinba, D. D. Shapirocb, Ya. P. Braginetzba, V. V. Fedorovcba, V. V. Nesvizhevskyd, M. Jentscheld, A. Ioffee, Yu. A. Berdnikovb

a Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russia
b Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, 188300 Russia
c St. Petersburg State University, St. Petersburg, 199034 Russia
d Institut Laue–Langevin, 38042 Grenoble, France
e Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, MLZ, 85747 Garching, Germany
References:
Abstract: The spatial splitting of an unpolarized neutron beam into two spin components in an inhomogeneous magnetic field (an analog of the Stern-Gerlach experiment) with small gradients has been measured at the Laue diffraction in a crystal and Bragg angles $\theta_{\mathrm{B}}=(78-82)^\circ$ close to a right one. The spatial splitting of the beam at a path length of $21.8$ cm has reached $(4.1\pm 0.1)$ cm (at a maximum gradient of $1.5$ G/cm and a diffraction angle of $82^\circ$). In the absence of the crystal, the splitting would be $\sim 3.8 \times 10^{-7}$ cm at the same distance and gradient. The experimental enhancement coefficient is $\sim10^5 \,\mathrm{tan}^2\,\theta_{\mathrm{B}}$, which is consistent with the theory.
Funding agency Grant number
Russian Foundation for Basic Research 17-02-00877_a
This work was supported by the Russian Foundation for Basic Research (project no. 17-02-00877-a).
Received: 23.09.2019
Revised: 27.09.2019
Accepted: 27.09.2019
English version:
Journal of Experimental and Theoretical Physics Letters, 2019, Volume 110, Issue 9, Pages 581–584
DOI: https://doi.org/10.1134/S0021364019210124
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Voronin, S. Yu. Semenikhin, D. D. Shapiro, Ya. P. Braginetz, V. V. Fedorov, V. V. Nesvizhevsky, M. Jentschel, A. Ioffe, Yu. A. Berdnikov, “Diffraction enhancement of the Stern–Gerlach effect for a neutron in a crystal”, Pis'ma v Zh. Èksper. Teoret. Fiz., 110:9 (2019), 579–583; JETP Letters, 110:9 (2019), 581–584
Citation in format AMSBIB
\Bibitem{VorSemSha19}
\by V.~V.~Voronin, S.~Yu.~Semenikhin, D.~D.~Shapiro, Ya.~P.~Braginetz, V.~V.~Fedorov, V.~V.~Nesvizhevsky, M.~Jentschel, A.~Ioffe, Yu.~A.~Berdnikov
\paper Diffraction enhancement of the Stern--Gerlach effect for a neutron in a crystal
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2019
\vol 110
\issue 9
\pages 579--583
\mathnet{http://mi.mathnet.ru/jetpl6031}
\crossref{https://doi.org/10.1134/S0370274X1921001X}
\elib{https://elibrary.ru/item.asp?id=43232869}
\transl
\jour JETP Letters
\yr 2019
\vol 110
\issue 9
\pages 581--584
\crossref{https://doi.org/10.1134/S0021364019210124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511164800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077553119}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6031
  • https://www.mathnet.ru/eng/jetpl/v110/i9/p579
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :22
    References:28
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024