Abstract:
Features of the Bragg diffraction of a Gaussian light beam on a regular domain structure with inclined 180∘ domain walls in a 5% MgO : LiNbO3 crystal have been studied experimentally and theoretically. The regular domain structure with a period of 8.79μm along the X axis has been prepared by the polarization switching method under the action of an external electric field in a 1-mm Z-cut plate. It has been shown that the inclination of walls of the regular domain structure by the angle α to the polar Z axis results in the mth order Bragg diffraction characterized by the intensity distribution Im(z) with two maxima the spacing between which at m=1,3,4,… increases as mα. The application of an external static electric field to the regular domain structure has allowed using the dynamics of the efficiency of the Bragg diffraction with m=1 to detect the screening of this field associated with the conductivity of inclined domain walls. The effective value of this conductivity over the period Λ for the studied regular domain structure with α=0.31∘ has been estimated as σeff=5.96⋅10−11Ω−1 m−1.
This work was supported by the Ministry of Education and Science of the Russian Federation (project nos. 3.1110.2017/4.6 and 3.8898.2017/8.9, state assignment for 2017–2019) and by the Russian Foundation for Basic Research (project nos. 16-29-14046-ofi_m and 18-32-00641).
Citation:
E. N. Savchenkov, S. M. Shandarov, S. V. Smirnov, A. A. Esin, A. R. Akhmatkhanov, V. Ya. Shur, “Diffraction of light on a regular domain structure with inclined walls in MgO : LiNbO3”, Pis'ma v Zh. Èksper. Teoret. Fiz., 110:3 (2019), 165–169; JETP Letters, 110:3 (2019), 178–182
\Bibitem{SavShaSmi19}
\by E.~N.~Savchenkov, S.~M.~Shandarov, S.~V.~Smirnov, A.~A.~Esin, A.~R.~Akhmatkhanov, V.~Ya.~Shur
\paper Diffraction of light on a regular domain structure with inclined walls in MgO\,:\,LiNbO$_3$
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2019
\vol 110
\issue 3
\pages 165--169
\mathnet{http://mi.mathnet.ru/jetpl5964}
\crossref{https://doi.org/10.1134/S0370274X19150050}
\elib{https://elibrary.ru/item.asp?id=39175298}
\transl
\jour JETP Letters
\yr 2019
\vol 110
\issue 3
\pages 178--182
\crossref{https://doi.org/10.1134/S0021364019150128}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000490949200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073604006}
Linking options:
https://www.mathnet.ru/eng/jetpl5964
https://www.mathnet.ru/eng/jetpl/v110/i3/p165
This publication is cited in the following 4 articles:
E. N. Savchenkov, A. V. Dubikov, D. E. Belskaya, S. M. Shandarov, M. A. Chuvakova, A. R. Akhmatkhanov, V. Ya. Shur, Bull. Russ. Acad. Sci. Phys., 88:S3 (2024), S413
Gang Huang, Integrated Ferroelectrics, 229:1 (2022), 103
E. N. Savchenkov, A. V. Dubikov, D. E. Kuzmich, A. E. Sharaeva, S. M. Shandarov, N. I. Burimov, M. A. Chuvakova, A. R. Akhmatkhanov, V. Ya. Shur, Opt. Mater., 122:B (2021), 111813
E. N. Savchenkov, A. V. Dubikov, A. E. Sharaeva, N. I. Burimov, S. M. Shandarov, A. A. Esin, A. R. Akhmatkhanov, V. Ya. Shur, JETP Letters, 112:10 (2020), 602–606