Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2019, Volume 109, Issue 10, Pages 694–698
DOI: https://doi.org/10.1134/S0370274X19100126
(Mi jetpl5908)
 

This article is cited in 7 scientific papers (total in 7 papers)

CONDENSED MATTER

Temperature-abnormal diffusivity in tilted periodic potentials

I. G. Marchenkoab, I. I. Marchenkoc, V. I. Tkachenkoba

a National Science Center Kharkov Institute of Physics and Technology, Kharkiv, Ukraine
b Karazin Kharkiv National University, Kharkiv, Ukraine
c National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine
Full-text PDF (310 kB) Citations (7)
References:
Abstract: The diffusion of particles in tilted spatially periodic potentials in systems with different friction coefficients $\gamma'$ has been studied in a wide temperature range. It has been shown that temperature-abnormal diffusivity is observed in a certain force interval in systems where $\gamma' < 1.1$. In the case of temperature-abnormal diffusivity, the diffusion coefficient $D$ increases with decreasing temperature. At the same time, temperature-abnormal diffusivity is absent at large friction coefficients $\gamma'$ and diffusion is always enhanced with increasing temperature. It has been analyzed how the anomalous temperature dependence of the diffusion coefficient is transformed to a normal dependence with increasing friction coefficient $\gamma'$. It has been found that a temperature-abnormal diffusivity "window" arises at certain friction coefficients. The diffusion coefficient first increases with decreasing temperature in a certain force interval and, then, decreases again. The diagrams of existence of such regions have been plotted.
Received: 07.03.2019
Revised: 07.03.2019
Accepted: 04.04.2019
English version:
Journal of Experimental and Theoretical Physics Letters, 2019, Volume 109, Issue 10, Pages 671–675
DOI: https://doi.org/10.1134/S0021364019100126
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. G. Marchenko, I. I. Marchenko, V. I. Tkachenko, “Temperature-abnormal diffusivity in tilted periodic potentials”, Pis'ma v Zh. Èksper. Teoret. Fiz., 109:10 (2019), 694–698; JETP Letters, 109:10 (2019), 671–675
Citation in format AMSBIB
\Bibitem{MarMarTka19}
\by I.~G.~Marchenko, I.~I.~Marchenko, V.~I.~Tkachenko
\paper Temperature-abnormal diffusivity in tilted periodic potentials
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2019
\vol 109
\issue 10
\pages 694--698
\mathnet{http://mi.mathnet.ru/jetpl5908}
\crossref{https://doi.org/10.1134/S0370274X19100126}
\elib{https://elibrary.ru/item.asp?id=37614563}
\transl
\jour JETP Letters
\yr 2019
\vol 109
\issue 10
\pages 671--675
\crossref{https://doi.org/10.1134/S0021364019100126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000477971200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069907975}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5908
  • https://www.mathnet.ru/eng/jetpl/v109/i10/p694
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :16
    References:32
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024