Loading [MathJax]/jax/output/SVG/config.js
Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2019, Volume 109, Issue 2, Pages 108–111
DOI: https://doi.org/10.1134/S0370274X19020085
(Mi jetpl5802)
 

This article is cited in 26 scientific papers (total in 26 papers)

CONDENSED MATTER

Optical properties of quantum dots with a core-multishell structure

P. Linkova, P. Samokhvalova, K. Vokhmintseva, M. Zvaigznea, V. A. Krivenkova, I. Nabievba

a National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
b Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, Reims, France
References:
Abstract: In the last decade, colloidal semiconductor nanocrystals (quantum dots) have been not only studied fundamentally but also applied in photovoltaics, optoelectronics, and biomedicine. Beginning with simple approaches to the deposition of protective shells, e.g., ZnS on CdSe cores, searches for ways to increase the quantum yield of photoluminescence of quantum dots have resulted now in the development of new types of quantum dots characterized not only by record high extinction coefficients but also by high photoluminescence quantum yields. In this work, the optical properties of core-multishell quantum dots have been analyzed. These quantum dots have been specially designed to reach the maximum possible localization of excited charge carriers inside luminescent cores, which makes it possible to reach a photoluminescence quantum yield close to 100%. Core-multishell quantum dot samples with a shell thickness of 3–7 monolayers have been fabricated. Changes in the characteristics of optical transitions in such quantum dots with an increase in the number of layers of the shell have been studied. The effect of the thickness of the shell on the optical properties of prepared quantum dots has been analyzed. In particular, analysis of photoluminescence lifetimes of such quantum dots has revealed a possible alternative mechanism of radiation of core-multishell quantum dots based on the slow charge carrier transfer from the excited outer layer of the CdS shell to the CdSe core.
Funding agency Grant number
Russian Foundation for Basic Research 16-34-60253_мол_а_дк
Received: 13.11.2018
Revised: 21.11.2018
Accepted: 22.11.2018
English version:
Journal of Experimental and Theoretical Physics Letters, 2019, Volume 109, Issue 2, Pages 112–115
DOI: https://doi.org/10.1134/S0021364019020103
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. Linkov, P. Samokhvalov, K. Vokhmintsev, M. Zvaigzne, V. A. Krivenkov, I. Nabiev, “Optical properties of quantum dots with a core-multishell structure”, Pis'ma v Zh. Èksper. Teoret. Fiz., 109:2 (2019), 108–111; JETP Letters, 109:2 (2019), 112–115
Citation in format AMSBIB
\Bibitem{LinSamVok19}
\by P.~Linkov, P.~Samokhvalov, K.~Vokhmintsev, M.~Zvaigzne, V.~A.~Krivenkov, I.~Nabiev
\paper Optical properties of quantum dots with a core-multishell structure
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2019
\vol 109
\issue 2
\pages 108--111
\mathnet{http://mi.mathnet.ru/jetpl5802}
\crossref{https://doi.org/10.1134/S0370274X19020085}
\elib{https://elibrary.ru/item.asp?id=36855225}
\transl
\jour JETP Letters
\yr 2019
\vol 109
\issue 2
\pages 112--115
\crossref{https://doi.org/10.1134/S0021364019020103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467096800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064805524}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5802
  • https://www.mathnet.ru/eng/jetpl/v109/i2/p108
  • This publication is cited in the following 26 articles:
    1. Tianxu Zhang, Xuan Yang, Bin Xie, Xiaobing Luo, Nanotechnology, 36:10 (2025), 102001  crossref
    2. Daniel Quesada-González, Arben Merkoçi, Biosensors and Bioelectronics, 273 (2025), 117180  crossref
    3. Adam Olejniczak, Zuzanna Lawera, Mario Zapata-Herrera, Andrey Chuvilin, Pavel Samokhvalov, Igor Nabiev, Marek Grzelczak, Yury Rakovich, Victor Krivenkov, APL Photonics, 9:1 (2024)  crossref
    4. D.G. Gulevich, I.R. Nabiev, P.S. Samokhvalov, Materials Today Chemistry, 35 (2024), 101837  crossref
    5. Ahmet F. Yazici, Sema Karabel Ocal, Aysenur Bicer, Ramis B. Serin, Rifat Kacar, Esin Ucar, Alper Ulku, Talha Erdem, Evren Mutlugun, Photonics, 11:7 (2024), 651  crossref
    6. Nazim Nazeer, Pooja Ratre, Kaniz Zehra Zaidi, Vikas Gurjar, Rakhi Dewangan, Arpit Bhargava, Pradyumna Kumar Mishra, Advances in Bioinformatics and Biomedical Engineering, Reshaping Healthcare with Cutting-Edge Biomedical Advancements, 2024, 235  crossref
    7. Hongwei Wang, Boyang Wang, Jiaxin Bai, Siyu Lu, J. Mater. Chem. A, 12:34 (2024), 22417  crossref
    8. Moupia Tajrin Oyshi, Md. Zillur Rahman, Suresh Sagadevan, Emerging Sustainable Nanomaterials for Biomedical Applications, 2024, 41  crossref
    9. I. S. Kriukova, E. A. Granizo, A. A. Knysh, P. S. Samokhvalov, I. R. Nabiev, Phys. Atom. Nuclei, 87:11 (2024), 1750  crossref
    10. Tushar Kanti Das, Sayan Ganguly, Foods, 12:11 (2023), 2195  crossref
    11. K. Hasanirokh, A. Naifar, Plasmonics, 2023  crossref
    12. M Kirak, Phys. Scr., 98:6 (2023), 065804  crossref
    13. Kushagra Agarwal, Himanshu Rai, Sandip Mondal, Mater. Res. Express, 10:6 (2023), 062001  crossref
    14. Victor Krivenkov, Pavel Samokhvalov, Igor Martynov, Yury Rakovich, Igor Nabiev, Michel J. Digonnet, Shibin Jiang, Optical Components and Materials XIX, 2022, 41  crossref
    15. João R. Martins, Victor Krivenkov, César R. Bernardo, Pavel Samokhvalov, Igor Nabiev, Yury P. Rakovich, Mikhail I. Vasilevskiy, J. Phys. Chem. C, 126:48 (2022), 20480  crossref
    16. Jijuan Jiang, Fengjuan Miao, Wenzhi Wu, Degui Kong, Buyinga Ridi, Yachen Gao, Opt. Express, 30:11 (2022), 19533  crossref
    17. A. M. Smirnov, A. D. Golinskaya, V. M. Mantsevich, B. M. Saidzhonov, R. B. Vasiliev, V. S. Dneprovskii, Nonlinear Optics and Applications XII, Proceedings of SPIE, 11770, eds. M. Bertolotti, A. Zayats, A. Zheltikov, Spie-Int Soc Optical Engineering, 2021, 1177010  crossref  isi
    18. D. V. Dyagileva, V. A. Krivenkov, P. S. Samokhvalov, I. R. Nabiev, Yu. P. Rakovich, Nanophotonics VIII, Proceedings of SPIE, 11345, eds. D. Andrews, A. Bain, M. Kauranen, J. Nunzi, Spie-Int Soc Optical Engineering, 2021, 113451D  crossref  isi  scopus
    19. V. Krivenkov, P. Samokhvalov, D. Dyagileva, I. Nabiev, Nanophotonics VIII, Proceedings of SPIE, 11345, eds. D. Andrews, A. Bain, M. Kauranen, J. Nunzi, Spie-Int Soc Optical Engineering, 2021, 113451S  crossref  isi
    20. Quantum Electron., 50:10 (2020), 976–983  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :43
    References:40
    First page:7
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025