This article is cited in 25 scientific papers (total in 25 papers)
PLASMA, HYDRO- AND GAS DYNAMICS
Measurement of the dynamic displacement current as a new method of study of the dynamics of formation of a streamer at a breakdown of gases at a high pressure
Abstract:
The dynamics of formation of streamers in a “needle-plane” gap filled with air at atmospheric pressure has been studied. It has been shown that the time dependence of the dynamic displacement current measured by either a current shunt or a collector placed behind a grid electrode is determined by the rate of variation of the shape and dimensions of a streamer. The presence of a single peak on oscillograms of the dynamic displacement current means that a ball streamer is formed in the gap and does not cross the gap during the time of voltage application. The presence of two peaks on oscillograms of the dynamic displacement current means that the ball streamer crosses the gap and reaches the opposite electrode. In this case, the ball streamer is usually transformed to a cylindrical one. It has been shown that the measurement of the dynamic displacement current makes it possible to determine the time dependence of the electric field strength near the planar electrode.
Citation:
D. V. Beloplotov, M. I. Lomaev, V. F. Tarasenko, D. A. Sorokin, “Measurement of the dynamic displacement current as a new method of study of the dynamics of formation of a streamer at a breakdown of gases at a high pressure”, Pis'ma v Zh. Èksper. Teoret. Fiz., 107:10 (2018), 636–642; JETP Letters, 107:10 (2018), 606–611
\Bibitem{BelLomTar18}
\by D.~V.~Beloplotov, M.~I.~Lomaev, V.~F.~Tarasenko, D.~A.~Sorokin
\paper Measurement of the dynamic displacement current as a new method of study of the dynamics of formation of a streamer at a breakdown of gases at a high pressure
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2018
\vol 107
\issue 10
\pages 636--642
\mathnet{http://mi.mathnet.ru/jetpl5574}
\crossref{https://doi.org/10.7868/S0370274X18100041}
\elib{https://elibrary.ru/item.asp?id=34941465}
\transl
\jour JETP Letters
\yr 2018
\vol 107
\issue 10
\pages 606--611
\crossref{https://doi.org/10.1134/S0021364018100065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440151700004}
\elib{https://elibrary.ru/item.asp?id=35766723}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050603796}
Linking options:
https://www.mathnet.ru/eng/jetpl5574
https://www.mathnet.ru/eng/jetpl/v107/i10/p636
This publication is cited in the following 25 articles:
D. A. Sorokin, D. V. Beloplotov, Bull. Russ. Acad. Sci. Phys., 88:4 (2024), 656
Vasily Yu. Kozhevnikov, Andrey V. Kozyrev, Victor F. Tarasenko, Aleksandr O. Kokovin, Evgeni Kh. Baksht, Nikita P. Vinogradov, Energies, 16:13 (2023), 4861
Dmitry Beloplotov, Victor Tarasenko, Dmitry Sorokin, Cheng Zhang, Tao Shao, High Voltage, 8:3 (2023), 527
D. V. Beloplotov, V. F. Tarasenko, D. A. Sorokin, JETP Letters, 116:5 (2022), 293–299
D. V. Beloplotov, V. F. Tarasenko, V. A. Shklyaev, D. A. Sorokin, JETP Letters, 113:2 (2021), 129–134
D. A. Sorokin, D. V. Beloplotov, V. F. Tarasenko, E. Kh. Baksht, Appl. Phys. Lett., 118:22 (2021), 224101
D. Beloplotov, D. Sorokin, V. Tarasenko, Energies, 14:24 (2021), 8449
V F Tarasenko, D A Sorokin, D V Beloplotov, M I Lomaev, E Kh Baksht, A G Burachenko, J. Phys.: Conf. Ser., 2064:1 (2021), 012001
Victor F. Tarasenko, Dmitry V. Beloplotov, Dmitry A. Sorokin, Mikhail I. Lomaev, Evgenii K. Baksht, Alexander G. Burachenko, Victor F. Tarasenko, Anton V. Klimkin, Maxim V. Trigub, XV International Conference on Pulsed Lasers and Laser Applications, 2021, 88
A. A. Knizhnik, S. V. Korobtsev, D. D. Medvedev, B. V. Potapkin, N. K. Belov, JETP Letters, 111:5 (2020), 273–277
V. S. Ripenko, D. V. Beloplotov, M. V. Erofeev, D. A. Sorokin, Russ. Phys. J., 63:5 (2020), 818–823
M. Cernak, T. Hoder, Z. Bonaventura, Plasma Sources Sci. Technol., 29:1 (2020), 013001