Abstract:
The dependences of the resistance of the layered quasi-one-dimensional semiconductor TiS3 on the direction and magnitude of the magnetic field B have been measured. The anisotropy and angular dependences of the magnetoresistance indicate the two-dimensional character of the conductivity at T<100 K. Below T0≈50 K, the magnetoresistance for the directions of the field in the plane of the layers (ab plane) increases sharply, whereas the transverse magnetoresistance (B∥c) becomes negative. The results confirm the possibility of an electron phase transition to a collective state at T0. The negative magnetoresistance (at B∥c) below T0 is explained by the magnetic-field-induced suppression of two-dimensional weak localization. The positive magnetoresistance (at B∥ab) is explained by the effect of the magnetic field on the spectrum of electronic states.
Citation:
I. G. Gorlova, V. Ya. Pokrovskii, S. Yu. Gavrilkin, A. Yu. Tsvetkov, “Change in the sign of the magnetoresistance and the two-dimensional conductivity of the layered quasi-one-dimensional semiconductor TiS3”, Pis'ma v Zh. Èksper. Teoret. Fiz., 107:3 (2018), 180–186; JETP Letters, 107:3 (2018), 175–181
\Bibitem{GorPokGav18}
\by I.~G.~Gorlova, V.~Ya.~Pokrovskii, S.~Yu.~Gavrilkin, A.~Yu.~Tsvetkov
\paper Change in the sign of the magnetoresistance and the two-dimensional conductivity of the layered quasi-one-dimensional semiconductor TiS$_3$
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2018
\vol 107
\issue 3
\pages 180--186
\mathnet{http://mi.mathnet.ru/jetpl5489}
\crossref{https://doi.org/10.7868/S0370274X18030074}
\elib{https://elibrary.ru/item.asp?id=32619804}
\transl
\jour JETP Letters
\yr 2018
\vol 107
\issue 3
\pages 175--181
\crossref{https://doi.org/10.1134/S0021364018030074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448937800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047940699}
Linking options:
https://www.mathnet.ru/eng/jetpl5489
https://www.mathnet.ru/eng/jetpl/v107/i3/p180
This publication is cited in the following 13 articles:
Jing Li, Lingxiao Zhao, Zhao Liu, Yanzhao Wang, Shan He, Journal of Alloys and Compounds, 1010 (2025), 177973
K. N. Boldyrev, E. V. Mostovschikova, A. N. Titov, V. Ya. Pokrovskii, I. G. Gorlova, Pisma v ZhETF, 120:8 (2024), 590–597
K. N. Boldyrev, E. V. Mostovshchikova, A. N. Titov, V. Ya. Pokrovskii, I. G. Gorlova, Jetp Lett., 120:8 (2024), 565
Michael J. Loes, Saman Bagheri, Nataliia S. Vorobeva, Jehad Abourahma, Alexander Sinitskii, ACS Appl. Nano Mater., 6:11 (2023), 9226
A.K. Swetha, Tapaswini Dash, Akash Kumar Maharana, K.P. Shinde, J.S. Park, Y. Jo, Rajeev Shesha Joshi, Journal of Magnetism and Magnetic Materials, 587 (2023), 171235
Randle M.D. Lipatov A. Datta A. Kumar A. Mansaray I. Sinitskii A. Singisetti U. Han J.E. Bird J.P., Appl. Phys. Lett., 120:7 (2022), 073102
I. G. Gorlova, S. A. Nikonov, S. G. Zybtsev, V. Ya. Pokrovskii, A. N. Titov, Applied Physics Letters, 120:15 (2022)
Yang Yu., Zhu H., Meng H., Ma W., Wang Ch., Ma F., Hu Zh., J. Mater. Sci., 56:4 (2021), 3280–3295
I. N. Trunkin, I. G. Gorlova, N. B. Bolotina, V. I. Bondarenko, Y. M. Chesnokov, A. L. Vasiliev, J. Mater. Sci., 56:3 (2021), 2150–2162
M. D. Randle, A. Lipatov, I. Mansaray, J. E. Han, A. Sinitskii, J. P. Bird, Appl. Phys. Lett., 118:21 (2021), 210502
V. I. Bondarenko, I. N. Trunkin, I. G. Gorlova, N. B. Bolotina, A. L. Vasiliev, Bull. Russ. Acad. Sci. Phys., 85:8 (2021), 858
I. G. Gorlova, A. V. Frolov, A. P. Orlov, V. Ya. Pokrovskii, Woei Wu Pai, JETP Letters, 110:6 (2019), 417–423
I. G. Gorlova, V. Ya. Pokrovskii, A. V. Frolov, A. P. Orlov, ACS Nano, 13:8 (2019), 8495–8497