Abstract:
The vortex pinning and liquid-glass transition have been studied in BaFe2−xNixAs2 single crystals with different doping levels (x=0.065,0.093,0.1,0.14,0.18). We found that Ni-doped Ba-122 has rather narrow vortex-liquid state region. Our results show that the temperature dependence of the resistivity as well as I−V characteristics of Ni-doped Ba-122 is consistent with 3D vortex-glass model. It was found that -pinning gives the main contribution to overall pinning in 122 Ni-doped system. The vortex phase diagrams for different doping levels were built based on the obtained data of temperature of the vortex-glass transition Tg and the upper critical magnetic field Hc2.
Citation:
V. A. Vlasenko, O. A. Sobolevskiy, A. V. Sadakov, K. S. Pervakov, S. Yu. Gavrilkin, A. V. Dik, Yu. F. Eltsev, “Systematic study of vortex pinning and a liquid–glass phase transition in BaFe2−xNixAs2 single crystals”, Pis'ma v Zh. Èksper. Teoret. Fiz., 107:2 (2018), 121–127; JETP Letters, 107:2 (2018), 119–125
\Bibitem{VlaSobSad18}
\by V.~A.~Vlasenko, O.~A.~Sobolevskiy, A.~V.~Sadakov, K.~S.~Pervakov, S.~Yu.~Gavrilkin, A.~V.~Dik, Yu.~F.~Eltsev
\paper Systematic study of vortex pinning and a liquid–glass phase transition in BaFe$_{2-x}$Ni$_x$As$_2$ single crystals
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2018
\vol 107
\issue 2
\pages 121--127
\mathnet{http://mi.mathnet.ru/jetpl5479}
\crossref{https://doi.org/10.7868/S0370274X18020108}
\elib{https://elibrary.ru/item.asp?id=32619794}
\transl
\jour JETP Letters
\yr 2018
\vol 107
\issue 2
\pages 119--125
\crossref{https://doi.org/10.1134/S0021364018020042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429362200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040681194}
Linking options:
https://www.mathnet.ru/eng/jetpl5479
https://www.mathnet.ru/eng/jetpl/v107/i2/p121
This publication is cited in the following 13 articles:
T. E. Kuzmicheva, Yu. A. Aleshchenko, P. I. Bezotosnyi, S. Yu. Gavrilkin, K. A. Dmitrieva, A. D. Ilina, S. A. Kuzmichev, A. V. Muratov, I. A. Nikitchenkov, G. V. Rybalchenko, Jetp Lett., 2025
I. A. Nikitchenkov, S. A. Kuz'michev, A. D. Il'ina, K. S. Pervakov, V. A. Vlasenko, T. E. Kuz'micheva, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 166:6 (2024), 834
I. A. Nikitchenkov, A. D. Ilina, V. M. Mikhailov, K. S. Pervakov, V. A. Vlasenko, S. A. Kuzmichev, T. E. Kuzmicheva, VMU, 2023, no. №4_2023, 2340501–1
A. Yu. Degtyarenko, V. A. Vlasenko, T. E. Kuzmicheva, K. S. Pervakov, S. Yu. Gavrilkin, A. Yu. Tsvetkov, S. A. Kuzmichev, JETP Letters, 118:11 (2023), 855–860
T. E. Kuzmicheva, S. A. Kuzmichev, K. S. Pervakov, V. A. Vlasenko, JETP Letters, 118:7 (2023), 514–519
I. A. Nikitchenkov, A. D. Ilina, V. M. Mikhailov, K. S. Pervakov, V. A. Vlasenko, S. A. Kuzmichev, T. E. Kuzmicheva, Moscow Univ. Phys., 78:4 (2023), 521
A. V. Sadakov, A. V. Muratov, S. A. Kuzmichev, O. A. Sobolevskiy, B. I. Massalimov, A. R. Prishchepa, V. M. Mikhailov, K. S. Pervakov, V. A. Vlasenko, T. E. Kuzmicheva, JETP Letters, 116:10 (2022), 708–715
A. S. Tsapleva, I. M. Abdyukhanov, V. I. Pantsyrnyi, M. V. Alekseev, D. N. Rakov, Phys. Metals Metallogr., 123:9 (2022), 839