Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2017, Volume 106, Issue 12, Pages 755–759
DOI: https://doi.org/10.7868/S0370274X17240067
(Mi jetpl5449)
 

This article is cited in 5 scientific papers (total in 5 papers)

CONDENSED MATTER

Surface microparticles in liquid helium. Quantum archimedes' principle

A. M. Dyugaeva, E. V. Lebedevab

a Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
b Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Full-text PDF (154 kB) Citations (5)
References:
Abstract: Deviations from Archimedes' principle for spherical molecular hydrogen particles with the radius $R_0$ at the surface of $^4$He liquid helium have been investigated. The classical Archimedes' principle holds if $R_0$ is larger than the helium capillary length $L_{\mathrm{cap}}\cong 500$ $\mu\mathrm{m}$. In this case, the elevation of a particle above the liquid is $h_+\sim R_0$. At $30\,\mu\mathrm{m}<R_0<500\,\mu\mathrm{m}$, the buoyancy is suppressed by the surface tension and $h_+\sim R_0^3/L^2_{\mathrm{cap}}$. At $R_0<30\,\mu\mathrm{m}$, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is $h_-\sim R^{5/3}_c/R^{2/3}_0$ if $R_0> R_c$. Here, $R_{\text{с}}\approx\left(\frac{\hbar c}{\rho g}\right)^{1/5}\approx1 $, where $\hbar$ is Planck's constant, $c$ is the speed of light, $g$ is the acceleration due to gravity, and $\rho$ is the mass density of helium. For very small particles ($R_0<R_c$), the distance $h_-$ to the surface of the liquid is independent of their size, $h_- = R_c$.
Funding agency Grant number
Russian Foundation for Basic Research 13-02-00178_а
Received: 31.10.2017
Revised: 03.11.2017
English version:
Journal of Experimental and Theoretical Physics Letters, 2017, Volume 106, Issue 12, Pages 788–792
DOI: https://doi.org/10.1134/S0021364017240079
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Dyugaev, E. V. Lebedeva, “Surface microparticles in liquid helium. Quantum archimedes' principle”, Pis'ma v Zh. Èksper. Teoret. Fiz., 106:12 (2017), 755–759; JETP Letters, 106:12 (2017), 788–792
Citation in format AMSBIB
\Bibitem{DyuLeb17}
\by A.~M.~Dyugaev, E.~V.~Lebedeva
\paper Surface microparticles in liquid helium. Quantum archimedes' principle
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2017
\vol 106
\issue 12
\pages 755--759
\mathnet{http://mi.mathnet.ru/jetpl5449}
\crossref{https://doi.org/10.7868/S0370274X17240067}
\elib{https://elibrary.ru/item.asp?id=32652420}
\transl
\jour JETP Letters
\yr 2017
\vol 106
\issue 12
\pages 788--792
\crossref{https://doi.org/10.1134/S0021364017240079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426795600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042910290}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5449
  • https://www.mathnet.ru/eng/jetpl/v106/i12/p755
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :30
    References:34
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024