Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2017, Volume 106, Issue 11, Pages 689–695
DOI: https://doi.org/10.7868/S0370274X17230060
(Mi jetpl5436)
 

This article is cited in 2 scientific papers (total in 2 papers)

CONDENSED MATTER

Fermi surface topology in the case of spontaneously broken rotational symmetry

S. S. Pankratovab, M. Baldoc, M. V. Zverevab

a Moscow Institute for Physics and Technology (State University), Dolgoprudnyi, Moscow region, Russia
b National Research Center Kurchatov Institute, Moscow, Russia
c Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy
Full-text PDF (392 kB) Citations (2)
References:
Abstract: The relation between the broken rotational symmetry of a system and the topology of its Fermi surface is studied for the two-dimensional system with the quasiparticle interaction $f(\mathbf{p}, \mathbf{p}')$ having a sharp peak at $|\mathbf{p}-\mathbf{p}'|=q_0$. It is shown that, in the case of attraction and $q_0=2p_{\mathrm{F}}$ the first instability manifesting itself with the growth of the interaction strength is the Pomeranchuk instability. This instability appearing in the $L=2$ channel gives rise to a second order phase transition to a nematic phase. The Monte Carlo calculations demonstrate that this transition is followed by a sequence of the first and second order phase transitions corresponding to the changes in the symmetry and topology of the Fermi surface. In the case of repulsion and small values of $q_0$, the first transition is a topological transition to a state with the spontaneously broken rotational symmetry, namely, corresponding to the nucleation of $L\simeq \pi(p_{\mathrm{F}}/q_0-1)$ small hole pockets at the distance $p_{\mathrm{F}}-q_0$ from the center and the deformation of the outer Fermi surface with the characteristic multipole number equal to $L$. At $q_0\to0$, when the model under study transforms to the two-dimensional Nozières model, the multipole number characterizing the spontaneous deformation is $L\to\infty$, whereas the infinitely folded Fermi curve acquires the Hausdorff dimension $D=2$ which corresponds to the state with the fermion condensate.
Funding agency Grant number
Russian Foundation for Basic Research 15-02-06261_a
Received: 31.10.2017
English version:
Journal of Experimental and Theoretical Physics Letters, 2017, Volume 106, Issue 11, Pages 720–726
DOI: https://doi.org/10.1134/S0021364017230096
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. S. Pankratov, M. Baldo, M. V. Zverev, “Fermi surface topology in the case of spontaneously broken rotational symmetry”, Pis'ma v Zh. Èksper. Teoret. Fiz., 106:11 (2017), 689–695; JETP Letters, 106:11 (2017), 720–726
Citation in format AMSBIB
\Bibitem{PanBalZve17}
\by S.~S.~Pankratov, M.~Baldo, M.~V.~Zverev
\paper Fermi surface topology in the case of spontaneously broken rotational symmetry
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2017
\vol 106
\issue 11
\pages 689--695
\mathnet{http://mi.mathnet.ru/jetpl5436}
\crossref{https://doi.org/10.7868/S0370274X17230060}
\elib{https://elibrary.ru/item.asp?id=32652407}
\transl
\jour JETP Letters
\yr 2017
\vol 106
\issue 11
\pages 720--726
\crossref{https://doi.org/10.1134/S0021364017230096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426585300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042728575}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5436
  • https://www.mathnet.ru/eng/jetpl/v106/i11/p689
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :21
    References:35
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024