Abstract:
The results of the experiment on the thermobaric annealing of titanium monoxide with a B1 cubic structure at a temperature of 2273 K have been analyzed. The analysis of these results has shown that an increase in the initial period of the lattice from 417.6 to 418.0 pm after processing at a pressure of 3 GPa and to 418.5 pm at a pressure of 6 GPa is due to the filling of vacant sites of the crystal structure with atoms. The ab initio quantum calculations indicate that the equilibrium period of the lattice should increase monotonically by 2% at a decrease in the concentration of vacancies from 16.7 to 0%. After aging the samples under normal conditions, the period of the lattice is no more than 421.0 pm and the concentration of vacancies is no lower than 11% because of the instability of the structure at lower concentrations of vacancies.
Citation:
M. G. Kostenko, A. A. Valeeva, A. A. Rempel, “Effect of high pressure on the period of the basis lattice and concentration of vacancies in titanium monoxide TiO”, Pis'ma v Zh. Èksper. Teoret. Fiz., 106:6 (2017), 329–333; JETP Letters, 106:6 (2017), 354–357
\Bibitem{KosValRem17}
\by M.~G.~Kostenko, A.~A.~Valeeva, A.~A.~Rempel
\paper Effect of high pressure on the period of the basis lattice and concentration of vacancies in titanium monoxide TiO
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2017
\vol 106
\issue 6
\pages 329--333
\mathnet{http://mi.mathnet.ru/jetpl5368}
\crossref{https://doi.org/10.7868/S0370274X17180023}
\elib{https://elibrary.ru/item.asp?id=29967222}
\transl
\jour JETP Letters
\yr 2017
\vol 106
\issue 6
\pages 354--357
\crossref{https://doi.org/10.1134/S0021364017180072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416173600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85036612907}
Linking options:
https://www.mathnet.ru/eng/jetpl5368
https://www.mathnet.ru/eng/jetpl/v106/i6/p329
This publication is cited in the following 5 articles:
V. I. Popkov, A. K. Bachina, A. A. Valeeva, A. A. Lobinsky, E. Y. Gerasimov, A. A. Rempel, Ceram. Int., 46:15 (2020), 24483–24487
N. M. Chtchelkatchev, R. E. Ryltsev, M. V. Magnitskaya, A. A. Rempel, Eur. Phys. J.-Spec. Top., 229:2-3, SI (2020), 179–185
J. Ding, T. Ye, H. Zhang, X. Yang, H. Zeng, Ch. Zhang, X. Wang, Appl. Phys. Lett., 115:10 (2019), 101902
N. M. Chtchelkachev, R. E. Ryltsev, M. G. Kostenko, A. A. Rempel, JETP Letters, 108:7 (2018), 476–480
A. A. Valeeva, M. G. Kostenko, A. Pfitzner, A. A. Rempel, Nanosyst.-Phys. Chem. Math., 9:4 (2018), 544–548