Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2017, Volume 106, Issue 2, Pages 72–77
DOI: https://doi.org/10.7868/S0370274X17140041
(Mi jetpl5318)
 

This article is cited in 30 scientific papers (total in 30 papers)

CONDENSED MATTER

Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice

M. K. Ramazanova, A. K. Murtazaevba

a Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, Russia
b Dagestan State University, Makhachkala, Russia
References:
Abstract: Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice with allowance for intralayer next nearest neighbor interactions have been studied using the replica Monte Carlo algorithm. The character of phase transitions has been analyzed using the histogram method and the Binder cumulant method. It has been found that a transition from the collinear to paramagnetic phase in the model under study occurs as a second order phase transition. The statistical critical exponents of the specific heat $\alpha$, susceptibility $\gamma$, order parameter $\beta$, and correlation radius $\nu$, as well as the Fisher index $\eta$, have been calculated using the finite-size scaling theory. It has been shown that the three-dimensional Heisenberg model on the layered cubic lattice with allowance for the next nearest neighbor interaction belongs to the same universality class of the critical behavior as the antiferromagnetic Heisenberg model on a layered triangular lattice.
Funding agency Grant number
Russian Foundation for Basic Research 16-02-00214-а
Received: 11.04.2017
English version:
Journal of Experimental and Theoretical Physics Letters, 2017, Volume 106, Issue 2, Pages 86–91
DOI: https://doi.org/10.1134/S0021364017140107
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. K. Ramazanov, A. K. Murtazaev, “Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice”, Pis'ma v Zh. Èksper. Teoret. Fiz., 106:2 (2017), 72–77; JETP Letters, 106:2 (2017), 86–91
Citation in format AMSBIB
\Bibitem{RamMur17}
\by M.~K.~Ramazanov, A.~K.~Murtazaev
\paper Phase transitions and critical properties in the antiferromagnetic Heisenberg model on a layered cubic lattice
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2017
\vol 106
\issue 2
\pages 72--77
\mathnet{http://mi.mathnet.ru/jetpl5318}
\crossref{https://doi.org/10.7868/S0370274X17140041}
\elib{https://elibrary.ru/item.asp?id=29760144}
\transl
\jour JETP Letters
\yr 2017
\vol 106
\issue 2
\pages 86--91
\crossref{https://doi.org/10.1134/S0021364017140107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411584500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029951838}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5318
  • https://www.mathnet.ru/eng/jetpl/v106/i2/p72
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :55
    References:49
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024