Abstract:
The dynamics of runaway electrons in a gas diode in a sharply nonuniform electric field determined by the geometry of electrodes is considered. The analytical solution of the equation of motion of electrons for an edge cathode shows that their runaway at the periphery in the region of weak field is possible only if the applied potential difference exceeds a certain threshold determined by the interelectrode distance and the parameters of the gas. This condition supplements a classical runaway condition that the field strength at the emission edge of the cathode should be higher than a threshold value depending only on the parameters of the gas. According to our estimates, this new condition imposes higher requirements than the classical condition on the field strength in the limit of the strongly sharp edge of the cathode.
Citation:
N. M. Zubarev, G. A. Mesyats, M. I. Yalandin, “Conditions for runaway electrons in a gas diode with a strongly nonuniform electric field”, Pis'ma v Zh. Èksper. Teoret. Fiz., 105:8 (2017), 515–520; JETP Letters, 105:8 (2017), 537–541
\Bibitem{ZubMesЯла17}
\by N.~M.~Zubarev, G.~A.~Mesyats, M.~I.~Yalandin
\paper Conditions for runaway electrons in a gas diode with a strongly nonuniform electric field
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2017
\vol 105
\issue 8
\pages 515--520
\mathnet{http://mi.mathnet.ru/jetpl5250}
\crossref{https://doi.org/10.7868/S0370274X17080124}
\elib{https://elibrary.ru/item.asp?id=28968784}
\transl
\jour JETP Letters
\yr 2017
\vol 105
\issue 8
\pages 537--541
\crossref{https://doi.org/10.1134/S002136401708015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404165100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021282398}
Linking options:
https://www.mathnet.ru/eng/jetpl5250
https://www.mathnet.ru/eng/jetpl/v105/i8/p515
This publication is cited in the following 36 articles:
Dmitry Levko, Plasma, 8:1 (2025), 12
N. M. Zubarev, G. A. Mesyats, M. I. Yalandin, Phys. Usp., 67:8 (2024), 803–813
Stepan N. Ivanov, Vasily V. Lisenkov, Physics of Plasmas, 31:8 (2024)
N. M. Zubarev, O. V. Zubareva, M. I. Yalandin, Tech. Phys., 69:6 (2024), 1846
A. V. Kozyrev, L. N. Lobanov, G. A. Mesyats, N. S. Semeniuk, K. A. Sharypov, S. A. Shunailov, M. I. Yalandin, N. M. Zubarev, O. V. Zubareva, Physics of Plasmas, 31:10 (2024)
M. A. Belyaev, M. A. Gashkov, M. I. Yalandin, N. M. Zubarev, O. V. Zubareva, Bull. Russ. Acad. Sci. Phys., 88:S4 (2024), S482
M. I. Yalandin, N. M. Zubarev, O. V. Zubareva, Bull. Russ. Acad. Sci. Phys., 87:S2 (2023), S175
M. A. Gashkov, A. V. Kozyrev, L. N. Lobanov, N. S. Semeniuk, M. I. Yalandin, N. M. Zubarev, O. V. Zubareva, Bull. Russ. Acad. Sci. Phys., 87:S2 (2023), S180
Dmitry Levko, Laxminarayan L. Raja, Journal of Applied Physics, 133:5 (2023)
Nikolay M. Zubarev, Olga V. Zubareva, Michael I. Yalandin, Electronics, 11:17 (2022), 2771
D. V. Beloplotov, V. F. Tarasenko, V. A. Shklyaev, D. A. Sorokin, JETP Letters, 113:2 (2021), 129–134
N. M. Zubarev, G. A. Mesyats, JETP Letters, 113:4 (2021), 259–264
M. A. Gashkov, N. M. Zubarev, O. V. Zubareva, G. A. Mesyats, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, JETP Letters, 113:6 (2021), 370–377
K. A. Sharypov, S. A. Shunailov, M. I. Yalandin, N. M. Zubarev, IEEE Trans. Plasma Sci., 49:9 (2021), 2516–2523
Yu. I. Mamontov, N. M. Zubarev, I. V. Uimanov, IEEE Trans. Plasma Sci., 49:9 (2021), 2589–2598
S. N. Ivanov, V. V. Lisenkov, Yu. I. Mamontov, Plasma Sources Sci. Technol., 30:7 (2021), 075021
Yu I Mamontov, V V Lisenkov, J. Phys.: Conf. Ser., 2064:1 (2021), 012020
G A Mesyats, E A Osipenko, K A Sharypov, V G Shpak, S A Shunailov, M I Yalandin, N M Zubarev, J. Phys.: Conf. Ser., 2064:1 (2021), 012003
G A Mesyats, K A Sharypov, V G Shpak, S A Shunailov, M I Yalandin, N M Zubarev, J. Phys.: Conf. Ser., 2064:1 (2021), 012006
G A Mesyats, N M Zubarev, J. Phys.: Conf. Ser., 2064:1 (2021), 012035