Abstract:
The charge radii of calcium isotopes are calculated within the self-consistent theory of finite Fermi systems based on the Fayans energy density functional. The fluctuating contribution of low-energy vibrations, i.e., phonons is taken into account approximately. As a result, an anomalous increase in the charge radii of neutron-rich calcium isotopes observed in a recent experiment has been reproduced.
Citation:
E. E. Saperstein, I. N. Borzov, S. V. Tolokonnikov, “On the anomalous $A$ dependence of the charge radii of heavy calcium isotopes”, Pis'ma v Zh. Èksper. Teoret. Fiz., 104:4 (2016), 216–221; JETP Letters, 104:4 (2016), 218–223
\Bibitem{SapBorTol16}
\by E.~E.~Saperstein, I.~N.~Borzov, S.~V.~Tolokonnikov
\paper On the anomalous $A$ dependence of the charge radii of heavy calcium isotopes
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 104
\issue 4
\pages 216--221
\mathnet{http://mi.mathnet.ru/jetpl5037}
\crossref{https://doi.org/10.7868/S0370274X16160025}
\elib{https://elibrary.ru/item.asp?id=26463505}
\transl
\jour JETP Letters
\yr 2016
\vol 104
\issue 4
\pages 218--223
\crossref{https://doi.org/10.1134/S0021364016160128}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000387337200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84993940406}
Linking options:
https://www.mathnet.ru/eng/jetpl5037
https://www.mathnet.ru/eng/jetpl/v104/i4/p216
This publication is cited in the following 14 articles:
Z. Yue, A. E. Barzakh, A. N. Andreyev, I. N. Borzov, J. G. Cubiss, A. Algora, M. Au, M. Balogh, S. Bara, R. A. Bark, C. Bernerd, M. J. G. Borge, D. Brugnara, K. Chrysalidis, T. E. Cocolios, H. De Witte, Z. Favier, L. M. Fraile, H. O. U. Fynbo, A. Gottardo, R. Grzywacz, R. Heinke, A. Illana, P. M. Jones, D. S. Judson, A. Korgul, U. Köster, M. Labiche, L. Le, R. Liča, M. Madurga, N. Marginean, B. A. Marsh, C. Mihai, E. Nácher, C. Neacsu, C. Nita, B. Olaizola, J. N. Orce, C. A. A. Page, R. D. Page, J. Pakarinen, P. Papadakis, A. Perea, M. Piersa-Siłkowska, Zs. Podolyák, E. Reis, S. Rothe, M. Sedlak, C. Sotty, S. Stegemann, O. Tengblad, S. V. Tolokonnikov, J. M. Udías, P. Van Duppen, N. Warr, W. Wojtaczka, Phys. Rev. C, 110:3 (2024)
I. N. Borzov, S. V. Tolokonnikov, Phys. Part. Nuclei, 54:4 (2023), 586
I. N. Borzov, S. S. Pankratov, S. V. Tolokonnikov, Phys. Atom. Nuclei, 86:3 (2023), 296
I. N. Borzov, S. S. Pankratov, S. V. Tolokonnikov, Yadernaya fizika, 86:3 (2023), 436
X.F. Yang, S.J. Wang, S.G. Wilkins, R.F. Garcia Ruiz, Progress in Particle and Nuclear Physics, 129 (2023), 104005
I. N. Borzov, S. V. Tolokonnikov, Phys. Atom. Nuclei, 85:3 (2022), 222
P. Dimitriou, I. Dillmann, B. Singh, V. Piksaikin, K. P. Rykaczewski, J. L. Tain, A. Algora, K. Banerjee, I. N. Borzov, D. Cano-Ott, S. Chiba, M. Fallot, D. Foligno, R. Grzywacz, X. Huang, T. Marketin, F. Minato, G. Mukherjee, B. C. Rasco, A. Sonzogni, M. Verpelli, A. Egorov, M. Estienne, L. Giot, D. Gremyachkin, M. Madurga, E. A. McCutchan, E. Mendoza, K. V. Mitrofanov, M. Narbonne, P. Romojaro, A. Sanchez-Caballero, N. D. Scielzo, Nucl. Data Sheets, 173 (2021), 144–238
I. N. Borzov, Phys. Atom. Nuclei, 83:5 (2020), 700–713
I. N. Borzov, S. V. Tolokonnikov, Phys. Atom. Nuclei, 83:6 (2020), 828–840
P. Sarriguren, A. Algora, G. Kiss, Phys. Rev. C, 98:2 (2018), 024311
I. N. Borzov, Phys. Atom. Nuclei, 81:6 (2018), 680–694
N.N. Arsenyev, A.P. Severyukhin, V.V. Voronov, N.V. Giai, N. Arsenyev, A. Bezbakh, I. Rogov, T. Shneidman, A. Vdovin, EPJ Web Conf., 194 (2018), 04002
E. E. Saperstein, S. V. Tolokonnikov, Fifth Conference on Nuclei and Mesoscopic Physics, AIP Conf. Proc., 1912, eds. P. Danielewicz, V. Zelevinsky, Amer. Inst. Phys., 2017, UNSP 020016
P.-G. Reinhard, W. Nazarewicz, Phys. Rev. C, 95:6 (2017), 064328