Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2016, Volume 104, Issue 1, Pages 18–23
DOI: https://doi.org/10.7868/S0370274X16130051
(Mi jetpl5001)
 

This article is cited in 3 scientific papers (total in 3 papers)

CONDENSED MATTER

Linear theory of random textures of $^3$He-A in an aerogel

I. A. Fomin

Kapitza Institute for Physical Problems, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (172 kB) Citations (3)
References:
Abstract: The spatial variation of the orbital part of the order parameter of $^3$He-A in an aerogel has been represented as random walk of a unit vector $\mathbf{l(r)}$ over a sphere under the action of random anisotropy created by the system of strands of the aerogel. The statistical properties of the resulting random texture have been studied. For distances at which the variation of $\mathbf{l}$ is much smaller than its magnitude, the average square $\langle\delta\mathbf{l}^2\rangle$ of variation of $\mathbf{l}$ has been expressed in terms of the correlation function of the component of the random anisotropy tensor. Under simplifying assumptions on the structure of this correlation function, an analytical dependence of $\langle\delta\mathbf{l}^2\rangle$ on $r$ has been obtained for isotropic and axially anisotropic aerogels. The average values of the squares of the projections of $\mathbf{l}$ on the axes of anisotropy for an anisotropic aerogel have been represented in terms of the parameters of the aerogel. The characteristic scale at which the long-range order is broken, as well as the magnitude of global anisotropy sufficient for the recovery of the long-range order, has been numerically estimated within a simple model. The values obtained have been compared to other estimates.
Funding agency Grant number
Russian Foundation for Basic Research 14-02-00054_a
Received: 24.05.2016
English version:
Journal of Experimental and Theoretical Physics Letters, 2016, Volume 104, Issue 1, Pages 20–25
DOI: https://doi.org/10.1134/S0021364016130087
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. A. Fomin, “Linear theory of random textures of $^3$He-A in an aerogel”, Pis'ma v Zh. Èksper. Teoret. Fiz., 104:1 (2016), 18–23; JETP Letters, 104:1 (2016), 20–25
Citation in format AMSBIB
\Bibitem{Fom16}
\by I.~A.~Fomin
\paper Linear theory of random textures of $^3$He-A in an aerogel
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 104
\issue 1
\pages 18--23
\mathnet{http://mi.mathnet.ru/jetpl5001}
\crossref{https://doi.org/10.7868/S0370274X16130051}
\elib{https://elibrary.ru/item.asp?id=26375908}
\transl
\jour JETP Letters
\yr 2016
\vol 104
\issue 1
\pages 20--25
\crossref{https://doi.org/10.1134/S0021364016130087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385020500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84988419433}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5001
  • https://www.mathnet.ru/eng/jetpl/v104/i1/p18
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :35
    References:44
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024