Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2016, Volume 103, Issue 9, Pages 662–667
DOI: https://doi.org/10.7868/S0370274X1609006X
(Mi jetpl4933)
 

This article is cited in 2 scientific papers (total in 2 papers)

CONDENSED MATTER

Theoretical treatment of pulsed Overhauser DNP: consideration of a general periodic pulse sequence

E. A. Nasibulovab, A. S. Kiryutinab, A. V. Yurkovskayaab, H.-M. Viethcb, K. L. Ivanovab

a Novosibirsk State University, 630090 Novosibirsk, Russia
b International Tomography Center SB of the RAS, 630090 Novosibirsk, Russia
c Freie Universität Berlin, 14195 Berlin, Germany
Full-text PDF (402 kB) Citations (2)
References:
Abstract: A general theoretical approach to pulsed Overhauser-type Dynamic Nuclear Polarization (DNP) is presented. DNP is a powerful method to create non-thermal polarization of nuclear spins, thereby enhancing their nuclear magnetic resonance signals. The theory presented can treat pulsed microwave irradiation of electron paramagnetic resonance transitions for periodic pulse sequences of general composition. DNP enhancement is analyzed in detail as a function of the microwave pulse length for rectangular pulses and pulses with finite rise time. Characteristic oscillations of the DNP enhancement are found when the pulse-length is stepwise increased, originating from coherent motion of the electron spins driven by the pulses. Experimental low-field DNP data are in very good agreement with this theoretical approach.
Funding agency Grant number
Russian Science Foundation 15-13-20035
Russian Foundation for Basic Research 16-33-00590_мол_а
Received: 28.03.2016
English version:
Journal of Experimental and Theoretical Physics Letters, 2016, Volume 103, Issue 9, Pages 582–587
DOI: https://doi.org/10.1134/S0021364016090113
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. A. Nasibulov, A. S. Kiryutin, A. V. Yurkovskaya, H.-M. Vieth, K. L. Ivanov, “Theoretical treatment of pulsed Overhauser DNP: consideration of a general periodic pulse sequence”, Pis'ma v Zh. Èksper. Teoret. Fiz., 103:9 (2016), 662–667; JETP Letters, 103:9 (2016), 582–587
Citation in format AMSBIB
\Bibitem{NasKirYur16}
\by E.~A.~Nasibulov, A.~S.~Kiryutin, A.~V.~Yurkovskaya, H.-M.~Vieth, K.~L.~Ivanov
\paper Theoretical treatment of pulsed Overhauser DNP: consideration of a general periodic pulse sequence
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 103
\issue 9
\pages 662--667
\mathnet{http://mi.mathnet.ru/jetpl4933}
\crossref{https://doi.org/10.7868/S0370274X1609006X}
\elib{https://elibrary.ru/item.asp?id=26254035}
\transl
\jour JETP Letters
\yr 2016
\vol 103
\issue 9
\pages 582--587
\crossref{https://doi.org/10.1134/S0021364016090113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000381078900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979243799}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4933
  • https://www.mathnet.ru/eng/jetpl/v103/i9/p662
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :20
    References:31
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024