Abstract:
A very simple model describing steady-state electron transport along a quantum superlattice of a finite length taking into account an arbitrary electrical characteristic of the injecting contact is considered. In the singleminiband approximation, exact formulas for the spatial distribution of the electric field in the superlattice are derived for different types of contact. Conditions under which the field is uniform are identified. Analytical expressions for the current-voltage characteristics are obtained. In the context of the developed theory, the possibility of attaining uniform-field conditions in a diode structure with a natural silicon-carbide superlattice is discussed.
Citation:
V. A. Maksimenko, V. V. Makarov, A. A. Koronovskii, A. E. Khramov, R. Venckevičius, G. Valušis, A. G. Balanov, F. V. Kusmartsev, K. N. Alekseev, “Electric-field distribution in a quantum superlattice with an injecting contact: Exact solution”, Pis'ma v Zh. Èksper. Teoret. Fiz., 103:7 (2016), 527–532; JETP Letters, 103:7 (2016), 465–470
\Bibitem{MakMakKor16}
\by V.~A.~Maksimenko, V.~V.~Makarov, A.~A.~Koronovskii, A.~E.~Khramov, R.~Venckevi{\v{c}}ius, G.~Valu{\v s}is, A.~G.~Balanov, F.~V.~Kusmartsev, K.~N.~Alekseev
\paper Electric-field distribution in a quantum superlattice with an injecting contact: Exact solution
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 103
\issue 7
\pages 527--532
\mathnet{http://mi.mathnet.ru/jetpl4909}
\crossref{https://doi.org/10.7868/S0370274X16070080}
\elib{https://elibrary.ru/item.asp?id=25944695}
\transl
\jour JETP Letters
\yr 2016
\vol 103
\issue 7
\pages 465--470
\crossref{https://doi.org/10.1134/S0021364016070080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377939100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84975678140}
Linking options:
https://www.mathnet.ru/eng/jetpl4909
https://www.mathnet.ru/eng/jetpl/v103/i7/p527
This publication is cited in the following 6 articles:
Vladislovas Čižas, Liudvikas Subačius, Natalia V. Alexeeva, Dalius Seliuta, Timo Hyart, Klaus Köhler, Kirill N. Alekseev, Gintaras Valušis, Phys. Rev. Lett., 128:23 (2022)
A. E. Dubinov, I. N. Kitayev, Tech. Phys., 63:4 (2018), 467–470
Y. Chen, X. Qin, Q. Huang, F. Gan, K. Han, Zh. Zheng, Ya. Meng, Environ. Earth Sci., 77:19 (2018), 659
V. A. Maksimenko, V. V. Makarov, A. A. Koronovskii, A. Selskiy, Dynamics and Fluctuations in Biomedical Photonics Xiv, Proceedings of Spie, 10063, eds. V. Tuchin, K. Larin, M. Leahy, R. Wang, Spie-Int Soc Optical Engineering, 2017
Maksimenko V.A., Makarov V.V., Koronovskii A.A., Hramov A.E., Balanov A.G., 2016 41St International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz), International Conference on Infrared Millimeter and Terahertz Waves, IEEE, 2016
V. A. Maksimenko, V. V. Makarov, A. A. Koronovskii, A. E. Hramov, A. G. Balanov, 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016, 1