Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2016, Volume 103, Issue 3, Pages 168–172
DOI: https://doi.org/10.7868/S0370274X16030024
(Mi jetpl4850)
 

This article is cited in 2 scientific papers (total in 2 papers)

FIELDS, PARTICLES, AND NUCLEI

Flat coordinates of topological CFT and solutions of Gauss–Manin system

A. Belavinabc, D. Gepnerd, Ya. Kononoveb

a Institute for Information Transmission Problems of the RAS (Kharkevich Institute), 127051 Moscow, Russia
b Landau Institute for Theoretical Physics of the RAS, 142432 Chernogolovka, Russia
c Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
d Department of Particle Physics, Weizmann Institute, 7610001 Rehovot, Israel
e Math Department, Higher School of Economics, National Research University, 117312 Moscow, Russia
Full-text PDF (144 kB) Citations (2)
References:
Abstract: It was shown many years ago by Dijkgraaf, Velinde, Verlinde for $2d$ Topological Conformal Field Theory (TCFT) and more recently for the non-critical String theory that some models of these two types can be solved using their connection with the special case of Frobenius Manifolds (FM) so called Saito Frobenius manifolds connected with a deformed singularity. The crucial point for obtaining an explicit expression for the correlators is finding the flat coordinates of SFMs as functions of the parameters of the deformed singularity. We suggest a direct way to find the flat coordinates, using the integral representation for the solutions of Gauss–Manin system connected with the corresponding SFM for the singularity.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The research of A.B. was carried out at the IITP RAS and supported by RSF (project # 14-50-00150).
Received: 23.12.2015
English version:
Journal of Experimental and Theoretical Physics Letters, 2016, Volume 103, Issue 3, Pages 152–156
DOI: https://doi.org/10.1134/S0021364016030024
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Belavin, D. Gepner, Ya. Kononov, “Flat coordinates of topological CFT and solutions of Gauss–Manin system”, Pis'ma v Zh. Èksper. Teoret. Fiz., 103:3 (2016), 168–172; JETP Letters, 103:3 (2016), 152–156
Citation in format AMSBIB
\Bibitem{BelGepKon16}
\by A.~Belavin, D.~Gepner, Ya.~Kononov
\paper Flat coordinates of topological CFT and solutions of Gauss--Manin system
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 103
\issue 3
\pages 168--172
\mathnet{http://mi.mathnet.ru/jetpl4850}
\crossref{https://doi.org/10.7868/S0370274X16030024}
\elib{https://elibrary.ru/item.asp?id=26125153}
\transl
\jour JETP Letters
\yr 2016
\vol 103
\issue 3
\pages 152--156
\crossref{https://doi.org/10.1134/S0021364016030024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376108100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979582117}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4850
  • https://www.mathnet.ru/eng/jetpl/v103/i3/p168
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :46
    References:63
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024