Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2016, Volume 103, Issue 2, Pages 124–127
DOI: https://doi.org/10.7868/S0370274X16020089
(Mi jetpl4843)
 

This article is cited in 1 scientific paper (total in 1 paper)

CONDENSED MATTER

Long-range spin correlations in a honeycomb spin model with magnetic field

A. V. Lunkinab, K. S. Tikhonovba, M. V. Feigel'manba

a Landau Institute for Theoretical Physics of the RAS, 119334 Moscow, Russia
b Moscow Institute of Physics and Technology, 141700 Moscow, Russia
Full-text PDF (151 kB) Citations (1)
References:
Abstract: We consider spin-${1}/{2}$ model on the honeycomb lattice (Ann. Phys. 321, 2 (2006)) in presence of weak magnetic field $h_{\alpha }\ll J$. Such a perturbation treated in the lowest nonvanishing order over $h_\alpha$ leads (Phys. Rev. Lett. 106, 067203 (2011)) to a power-law decay of irreducible spin correlations $\left\langle \left\langle s^{z}(t,r)s^{z}(0,0)\right\rangle \right\rangle \propto h_{z}^{2}f(t,r)$, where $f(t,r)\propto \lbrack \max (t,Jr)]^{-4}$. In the present Letter we studied the effects of the next order of perturbation in $h_z$ and found an additional term of the order $h_z^4$ in the correlation function $\left\langle\left\langle s^{z}(t,r)s^{z}(0,0)\right\rangle\right\rangle$ which scales as $ h_z^4\cos\gamma/r^3$ at $Jt \ll r$, where $\gamma$ is the polar angle in the $\mathrm{2D}$ plane. We demonstrate that such a contribution can be understood as a result of a perturbation of the effective Majorana Hamiltonian by weak imaginary vector potential $A_x \propto i h_z^2$.
Funding agency Grant number
Russian Science Foundation 14-12-00898
This research was supported by the Russian Science Foundation grant #14-12-00898.
Received: 26.11.2015
English version:
Journal of Experimental and Theoretical Physics Letters, 2016, Volume 103, Issue 2, Pages 117–121
DOI: https://doi.org/10.1134/S0021364016020090
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. V. Lunkin, K. S. Tikhonov, M. V. Feigel'man, “Long-range spin correlations in a honeycomb spin model with magnetic field”, Pis'ma v Zh. Èksper. Teoret. Fiz., 103:2 (2016), 124–127; JETP Letters, 103:2 (2016), 117–121
Citation in format AMSBIB
\Bibitem{LunTikFei16}
\by A.~V.~Lunkin, K.~S.~Tikhonov, M.~V.~Feigel'man
\paper Long-range spin correlations in a honeycomb spin model with magnetic field
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 103
\issue 2
\pages 124--127
\mathnet{http://mi.mathnet.ru/jetpl4843}
\crossref{https://doi.org/10.7868/S0370274X16020089}
\elib{https://elibrary.ru/item.asp?id=26126486}
\transl
\jour JETP Letters
\yr 2016
\vol 103
\issue 2
\pages 117--121
\crossref{https://doi.org/10.1134/S0021364016020090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374066200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962898754}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4843
  • https://www.mathnet.ru/eng/jetpl/v103/i2/p124
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :32
    References:35
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024