Abstract:
Molecular dynamics experiments for metal nanoclusters (gold, nickel, and aluminum) with the tight-binding potential have indicated that the melting temperature increases noticeably and the crystallization temperature decreases significantly with an increase in the absolute value of the heating and cooling rates, respectively. It has been concluded that the pronounced hysteresis of melting and crystallization is due primarily to nonequilibrium conditions of heating and cooling, but it is incompletely eliminated by reducing the rate of variation of the temperature. It has been found that the hysteresis of melting and crystallization corresponds at the structural level to a smooth crossover from the liquid state to the crystal one.
Citation:
V. M. Samsonov, S. A. Vasiliyev, I. V. Talyzin, Yu. A. Ryzhkov, “On reasons for the hysteresis of melting and crystallization of nanoparticles”, Pis'ma v Zh. Èksper. Teoret. Fiz., 103:2 (2016), 100–105; JETP Letters, 103:2 (2016), 94–99
\Bibitem{SamVasTal16}
\by V.~M.~Samsonov, S.~A.~Vasiliyev, I.~V.~Talyzin, Yu.~A.~Ryzhkov
\paper On reasons for the hysteresis of melting and crystallization of nanoparticles
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 103
\issue 2
\pages 100--105
\mathnet{http://mi.mathnet.ru/jetpl4839}
\crossref{https://doi.org/10.7868/S0370274X16020041}
\elib{https://elibrary.ru/item.asp?id=26126472}
\transl
\jour JETP Letters
\yr 2016
\vol 103
\issue 2
\pages 94--99
\crossref{https://doi.org/10.1134/S0021364016020119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000374066200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962916641}
Linking options:
https://www.mathnet.ru/eng/jetpl4839
https://www.mathnet.ru/eng/jetpl/v103/i2/p100
This publication is cited in the following 23 articles:
Elena V. Dudysheva, Galina S. Shiling, Pavel V. Zakharov, 2024 7th International Conference on Information Technologies in Engineering Education (Inforino), 2024, 1
V. V. Puytov, A. A. Romanov, I. V. Talyzin, V. M. Samsonov, Russ Chem Bull, 71:4 (2022), 686
V. G. Sursaeva, Russ. Metall., 2021:10 (2021), 1165–1170
V. M. Samsonov, S. A. Vasilyev, K. K. Nebyvalova, I. V. Talyzin, N. Yu. Sdobnyakov, D. N. Sokolov, M. I. Alymov, J. Nanopart. Res., 22:8 (2020), 247
V. G. Sursaeva, A. S. Gornakova, Russ. Metall., 2020:10 (2020), 1050–1054
V. N. Kuryakov, D. D. Ivanova, A. P. Semenov, P. A. Gushchin, E. V. Ivanov, A. A. Novikov, T. N. Yusupova, D. Shchukin, Energy Fuels, 34:5 (2020), 5168–5175
V M Samsonov, A Yu Kartoshkin, I V Talyzin, S A Vasilyev, I A Kaplunov, J. Phys.: Conf. Ser., 1658:1 (2020), 012047
V. M. Samsonov, I. V. Talyzin, A. Yu. Kartoshkin, S. A. Vasilyev, Appl. Nanosci., 9:1 (2019), 119–133
I. V. Talyzin, M. V. Samsonov, V. M. Samsonov, M. Yu. Pushkar, V. V. Dronnikov, Semiconductors, 53:7 (2019), 947–953
M. Azreg-Ainou, B. Ibrahimoglu, Eur. Phys. J. E, 42:8 (2019), 96
V. M. Samsonov, N. Yu. Sdobnyakov, I. V. Talyzin, D. N. Sokolov, V. S. Myasnichenko, S. A. Vasilyev, A. Yu. Kolosov, J. Surf. Ingestig., 13:6 (2019), 1185–1188
I. V. Talyzin, A. Yu. Kartoshkin, S. A. Vasilyev, M. V. Samsonov, V. M. Samsonov, Phys. Chem. Aspects Study Clusters Nanostruct. Nanomater., 2019, no. 11, 364–373
I. V. Talyzin, V. M. Samsonov, Izv. vysš. učebn. zaved., Mater. èlektron. teh., 22:2 (2019), 84
Igor V. Talyzin, Vladimir M. Samsonov, MoEM, 5:4 (2019), 159
V. M. Samsonov, A. G. Bembel, A. Yu. Kartoshkin, S. A. Vasilyev, I. V. Talyzin, J. Therm. Anal. Calorim., 133:2 (2018), 1207–1217
S. A. Guchenko, V. M. Yurov, V. Ch. Laurinas, S. S. Kasymov, Bull. Univ. Karaganda-Phys., 3:91 (2018), 16–28
V. M. Samsonov, N. Yu. Sdobnyakov, V. S. Myasnichenko, I. V. Talyzin, V. V. Kulagin, S. A. Vasilyev, A. G. Bembel, A. Yu. Kartoshkin, D. N. Sokolov, J. Surf. Ingestig., 12:6 (2018), 1206–1209
A. G. Bembel, Russ. Phys. J., 59:10 (2017), 1567–1574
V. S. Baidyshev, Yu. Ya. Gafner, S. L. Gafner, L. V. Redel, Phys. Solid State, 59:12 (2017), 2512–2518