Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2015, Volume 102, Issue 12, Pages 919–922
DOI: https://doi.org/10.7868/S0370274X15240042
(Mi jetpl4816)
 

This article is cited in 5 scientific papers (total in 5 papers)

CONDENSED MATTER

Staircase structure of Shapiro steps

Yu. M. Shukrinovab, I. R. Rahmonovbc, M. Nashaatdb

a Dubna International University for Nature, Society and Man, 141982 Dubna, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
c Umarov Physical and Technical Institute, 734063 Dushanbe, Tajikistan
d Department of Physics, Cairo University, 12613 Cairo, Egypt
Full-text PDF (407 kB) Citations (5)
References:
Abstract: We investigate $IV$-characteristics of coupled Josephson junctions which model the intrinsic Josephson junctions in high temperature superconductors under external electromagnetic radiation. A staircase structure of Shapiro steps is found in the branching region. Its origin is related to the coupling between junctions and their switching from rotating to oscillating states. This conclusion are tested by detailed analysis of the $IV$-characteristics as for total stack and for each junction in the stack. $IV$-curves of junctions in the stack are compared with the average of time derivative of phase difference. Experimental observation of this staircase structure would give us a prove of coupling between junctions and a way for precise measurement of its value. Such investigations would be also useful for a diagnostic of Josephson junctions in the stack.
Funding agency Grant number
Russian Foundation for Basic Research 15-29-01217_офи_м
15-51-61011_Египет_а
The reported study was funded by RFBR according to the research project #15–29–01217 and 15-51-61011.
Received: 10.10.2015
English version:
Journal of Experimental and Theoretical Physics Letters, 2015, Volume 102, Issue 12, Pages 803–806
DOI: https://doi.org/10.1134/S002136401524011X
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yu. M. Shukrinov, I. R. Rahmonov, M. Nashaat, “Staircase structure of Shapiro steps”, Pis'ma v Zh. Èksper. Teoret. Fiz., 102:12 (2015), 919–922; JETP Letters, 102:12 (2015), 803–806
Citation in format AMSBIB
\Bibitem{ShuRahNas15}
\by Yu.~M.~Shukrinov, I.~R.~Rahmonov, M.~Nashaat
\paper Staircase structure of Shapiro steps
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 102
\issue 12
\pages 919--922
\mathnet{http://mi.mathnet.ru/jetpl4816}
\crossref{https://doi.org/10.7868/S0370274X15240042}
\elib{https://elibrary.ru/item.asp?id=25373115}
\transl
\jour JETP Letters
\yr 2015
\vol 102
\issue 12
\pages 803--806
\crossref{https://doi.org/10.1134/S002136401524011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371275600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959341256}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4816
  • https://www.mathnet.ru/eng/jetpl/v102/i12/p919
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :37
    References:56
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024