Abstract:
A nonequilibrium model of the growth of a spherical crystal in a supercooled melt has been presented. The model includes correctly the effect of melt heating near the phase boundary, which considerably affects the growth rate of the crystal. The analytical solution of the problem has been found under the conditions of a strongly nonstationary process and large deviations from equilibrium. It has been shown that the previous solutions found in the quasi-steady-state approximation are the special cases of the solution found in this work. It has been demonstrated that the equilibrium is achieved at the crystallization front after some time if the initial supercooling is below the thermal effect of the phase transition (the Kutateladze criterion is greater than unity). In this case, the solution of the problem becomes self-similar. The crystal grows all the time under essentially nonequilibrium conditions if the initial supercooling is above the critical one. The effect of substance shrinkage on the growth rate of the crystal has been investigated.
Citation:
A. A. Chernov, A. A. Pil'nik, “Mechanism of growth of a crystalline nucleus in a supercooled melt at large deviations from equilibrium”, Pis'ma v Zh. Èksper. Teoret. Fiz., 102:8 (2015), 591–595; JETP Letters, 102:8 (2015), 526–529
\Bibitem{ChePil15}
\by A.~A.~Chernov, A.~A.~Pil'nik
\paper Mechanism of growth of a crystalline nucleus in a supercooled melt at large deviations from equilibrium
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 102
\issue 8
\pages 591--595
\mathnet{http://mi.mathnet.ru/jetpl4766}
\crossref{https://doi.org/10.7868/S0370274X15200096}
\elib{https://elibrary.ru/item.asp?id=25021561}
\transl
\jour JETP Letters
\yr 2015
\vol 102
\issue 8
\pages 526--529
\crossref{https://doi.org/10.1134/S0021364015200023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368406700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953398503}
Linking options:
https://www.mathnet.ru/eng/jetpl4766
https://www.mathnet.ru/eng/jetpl/v102/i8/p591
This publication is cited in the following 18 articles:
Andrey A. Chernov, Dmitrii V. Antonov, Aleksandr N. Pavlenko, Tali Bar-Kohany, Pavel A. Strizhak, Sergei S. Sazhin, Fuel, 392 (2025), 134696
A. A. Chernov, M. N. Davydov, S. I. Lezhnin, Thermophys. Aeromech., 30:4 (2024), 721
O. SHABLOVSKY, D. KROLL, HERALD OF POLOTSK STATE UNIVERSITY. Series S FUNDAMENTAL SCIENCES, 2024, no. 1, 60
A. A. Chernov, M. N. Davydov, A. A. Pil'nik, Thermophys. Aeromech., 30:1 (2023), 153
Adamova T.P., Manakov A.Yu., Elistratov D.S., Pil'nik A.A., Chernov A.A., Int. J. Heat Mass Transf., 180 (2021), 121775
A. A. Chernov, A. A. Pil'nik, Mater. Today-Proc., 16:1 (2019), 144–150
A. A. Chernov, A. A. Pil'nik, M. N. Davydov, XXXV Siberian Thermophysical Seminar, 2019, Journal of Physics Conference Series, 1382, IOP Publishing Ltd, 2019, UNSP 012107
A. A. Chernov, A. A. Pil'nik, J. Cryst. Growth, 483 (2018), 291–296
A. A. Chernov, A. A. Pil'nik, Int. J. Heat Mass Transf., 119 (2018), 963–969
S. Y. Misyura, Cryst. Growth Des., 18:3 (2018), 1327–1338
A. A. Chernov, A. A. Pil'nik, M. N. Davydov, E. V. Ermanyuk, M. A. Pakhomov, Int. J. Heat Mass Transf., 123 (2018), 1101–1108
Andrey A. Pil'nik, Andrey A. Chernov, G.V. Kuznetsov, E. Bulba, D. Feoktistov, MATEC Web Conf., 194 (2018), 01045
A. Pil'nik, A. Chernov, 2nd All-Russian Scientific Conference Thermophysics and Physical Hydrodynamics With the School For Young Scientists, Journal of Physics Conference Series, 899, IOP Publishing Ltd, 2017, UNSP 032019
Ulrich Mansfeld, Falko Langenhorst, Matthias Ebert, Astrid Kowitz, Ralf Thomas Schmitt, Meteorit & Planetary Scien, 52:7 (2017), 1449
Nakoryakov V., Misyura S., Morozov V., Heat and Mass Transfer in the System of Thermal Modes of Energy - Technical and Technological Equipment (Hmttsc-2016), Matec Web of Conferences, 72, eds. Kuznetsov G., Strizhak P., Bulba E., Zhdanova A., E D P Sciences, 2016, UNSP 01072