Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2015, Volume 102, Issue 2, Pages 135–138 (Mi jetpl4690)  

This article is cited in 4 scientific papers (total in 4 papers)

NONLINEAR DYNAMICS

On the nonlinear (3 + 1)-dimensional Klein–Gordon equation allowing oscillating localized solutions

E. G. Ekomasov, R. K. Salimov

Bashkir State University, Ufa, 450076, Russia
Full-text PDF (314 kB) Citations (4)
References:
Abstract: Certain nonlinear scalar Klein–Gordon equations have been specified for which the existence of long-lived ($t\sim 1000$) stable spherically symmetric solutions in the form of pulsons has been numerically revealed. Their average amplitude of oscillations and the frequency of the fast oscillation mode do not change during the entire time of calculation. It has been shown that the wave solutions of the Klein–Gordon equation with zero mass hold for these equations.
Received: 05.05.2015
Revised: 15.06.2015
English version:
Journal of Experimental and Theoretical Physics Letters, 2015, Volume 102, Issue 2, Pages 122–124
DOI: https://doi.org/10.1134/S0021364015140040
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. G. Ekomasov, R. K. Salimov, “On the nonlinear (3 + 1)-dimensional Klein–Gordon equation allowing oscillating localized solutions”, Pis'ma v Zh. Èksper. Teoret. Fiz., 102:2 (2015), 135–138; JETP Letters, 102:2 (2015), 122–124
Citation in format AMSBIB
\Bibitem{EkoSal15}
\by E.~G.~Ekomasov, R.~K.~Salimov
\paper On the nonlinear (3 + 1)-dimensional Klein--Gordon equation allowing oscillating localized solutions
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 102
\issue 2
\pages 135--138
\mathnet{http://mi.mathnet.ru/jetpl4690}
\elib{https://elibrary.ru/item.asp?id=24156808}
\transl
\jour JETP Letters
\yr 2015
\vol 102
\issue 2
\pages 122--124
\crossref{https://doi.org/10.1134/S0021364015140040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361757800012}
\elib{https://elibrary.ru/item.asp?id=24951279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942315258}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4690
  • https://www.mathnet.ru/eng/jetpl/v102/i2/p135
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024