Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2015, Volume 102, Issue 2, Pages 82–88
DOI: https://doi.org/10.7868/S0370274X15140027
(Mi jetpl4680)
 

This article is cited in 3 scientific papers (total in 3 papers)

ASTROPHYSICS AND COSMOLOGY

Emergent physics on Mach's principle and the rotating vacuum

G. Jannesa, G. E. Volovikbc

a Modelling & Numerical Simulation Group, Universidad Carlos III de Madrid, 28911 Leganés, Spain
b Landau Institute for Theoretical Physics of the RAS, 119334 Moscow, Russia
c Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
Full-text PDF (162 kB) Citations (3)
References:
Abstract: Mach's principle applied to rotation can be correct if one takes into account the rotation of the quantum vacuum together with the Universe. Whether one can detect the rotation of the vacuum or not depends on its properties. If the vacuum is fully relativistic at all scales, Mach's principle should work and one cannot distinguish the rotation: in the rotating Universe+vacuum, the co-rotating bucket will have a flat surface (not concave). However, if there are “quantum gravity” effects which violate Lorentz invariance at high energy, then the rotation will become observable. This is demonstrated by analogy in condensed-matter systems, which consist of two subsystems: superfluid background (analog of vacuum) and “relativistic” excitations (analog of matter). For the low-energy (long-wavelength) observer the rotation of the vacuum is not observable. In the rotating frame, the “relativistic” quasiparticles feel the background as a Minkowski vacuum, i.e. they do not feel the rotation. Mach's idea of the relativity of rotational motion does indeed work for them. But rotation becomes observable by high-energy observers, who can see the quantum gravity effects.
Received: 05.06.2015
English version:
Journal of Experimental and Theoretical Physics Letters, 2015, Volume 102, Issue 2, Pages 73–79
DOI: https://doi.org/10.1134/S0021364015140052
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. Jannes, G. E. Volovik, “Emergent physics on Mach's principle and the rotating vacuum”, Pis'ma v Zh. Èksper. Teoret. Fiz., 102:2 (2015), 82–88; JETP Letters, 102:2 (2015), 73–79
Citation in format AMSBIB
\Bibitem{JanVol15}
\by G.~Jannes, G.~E.~Volovik
\paper Emergent physics on Mach's principle and the rotating vacuum
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 102
\issue 2
\pages 82--88
\mathnet{http://mi.mathnet.ru/jetpl4680}
\crossref{https://doi.org/10.7868/S0370274X15140027}
\elib{https://elibrary.ru/item.asp?id=24156791}
\transl
\jour JETP Letters
\yr 2015
\vol 102
\issue 2
\pages 73--79
\crossref{https://doi.org/10.1134/S0021364015140052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361757800002}
\elib{https://elibrary.ru/item.asp?id=24951286}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942316204}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4680
  • https://www.mathnet.ru/eng/jetpl/v102/i2/p82
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :44
    References:58
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024