Abstract:
The theory of reemission of attosecond electromagnetic pulses by regular multiatomic systems of identical complex atoms has been developed with allowance for thermal vibrations. It has been shown that thermal vibrations result in noticeable changes in the “diffraction” maxima characteristic of regular targets with atoms at rest. A one-dimensional lattice has been considered as an example. Generalization to two- and three-dimensional lattices has been given.
Citation:
D. N. Makarov, V. I. Matveev, “Effect of thermal vibrations on interference effects at the reemission of attosecond electromagnetic pulses by regular multiatomic systems”, Pis'ma v Zh. Èksper. Teoret. Fiz., 101:9 (2015), 677–682; JETP Letters, 101:9 (2015), 603–608
\Bibitem{MakMat15}
\by D.~N.~Makarov, V.~I.~Matveev
\paper Effect of thermal vibrations on interference effects at the reemission of attosecond electromagnetic pulses by regular multiatomic systems
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 101
\issue 9
\pages 677--682
\mathnet{http://mi.mathnet.ru/jetpl4620}
\crossref{https://doi.org/10.7868/S0370274X15090040}
\elib{https://elibrary.ru/item.asp?id=23765051}
\transl
\jour JETP Letters
\yr 2015
\vol 101
\issue 9
\pages 603--608
\crossref{https://doi.org/10.1134/S0021364015090118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358576200004}
\elib{https://elibrary.ru/item.asp?id=23993601}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938072986}
Linking options:
https://www.mathnet.ru/eng/jetpl4620
https://www.mathnet.ru/eng/jetpl/v101/i9/p677
This publication is cited in the following 11 articles:
D. N. Makarov, N. V. Krivopolenov, THE VIII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2021), 2466, THE VIII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE – PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2021), 2022, 030029
M. K. Eseev, V. I. Matveev, D. N. Makarov, JETP Letters, 114:7 (2021), 387–405
A. A. Goshev, M. K. Eseev, D. N. Makarov, J. Exp. Theor. Phys., 130:1 (2020), 28–34
Goshev A.A. Makarov D.N. Eseev M.K., AIP Conference Proceedings, 2313, ed. Volkovich V. Kashin I. Smirnov A. Narkhov E., Amer Inst Physics, 2020, 030044
Kraynova A.A., Makarov D.N., AIP Conference Proceedings, 2313, eds. Volkovich V., Kashin I., Smirnov A., Narkhov E., Amer Inst Physics, 2020, 030052
Makarova K.A., AIP Conference Proceedings, 2313, eds. Volkovich V., Kashin I., Smirnov A., Narkhov E., Amer Inst Physics, 2020, 030056
D. N. Makarov, Opt. Express, 27:22 (2019), 31989–32008
K. A. Makarova, M. K. Eseev, D. N. Makarov, PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers' Conference, 2174, PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers' Conference, 2019, 020135
V. A. Astapenko, N. N. Moroz, M. I. Mutafyan, JETP Letters, 108:3 (2018), 165–169
V. I. Matveev, D. N. Makarov, XXVth Congress on Spectroscopy, EPJ Web Conf., 132, eds. E. Vinogradov, A. Naumov, M. Gladush, K. Karimullin, EDP Sciences, 2017, UNSP 02015
V. I. Matveev, D. N. Makarov, JETP Letters, 103:4 (2016), 286–291