Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2015, Volume 101, Issue 7, Pages 550–555
DOI: https://doi.org/10.7868/S0370274X15070140
(Mi jetpl4602)
 

This article is cited in 18 scientific papers (total in 18 papers)

NONLINEAR DYNAMICS

The effect of the $\phi^4$ kink's internal mode during scattering on $\mathcal{PT}$-symmetric defect

D. Saadatmanda, S. V. Dmitrievbc, D.I. Borisovde, P. G. Kevrekidisf, M. A. Fatykhovd, K. Javidana

a ­­­­Department of Physics, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran
b Institute for Metals Superplasticity Problems RAS, 450001 Ufa, Russia
c National Research Tomsk State University, 634036 Tomsk, Russia
d Bashkir State Pedagogical University, 450000 Ufa, Russia
e Institute of Mathematics CC USC RAS, 450008 Ufa, Russia
f Department of Mathematics and Statistics, University of Massachusetts, MA 01003 Amherst, USA
References:
Abstract: The effect of the $\phi^4$ kink's internal mode (IM) during the scattering from a $\mathcal{PT}$-symmetric defect is investigated. It is demonstrated that if a $\phi^4$ kink hits the defect from the gain side, a noticeable IM is excited, while for the kink coming from the opposite direction the mode excitation is much weaker. In the case when the kink initially carries IM, the IM amplitude is affected by the defect if the kink moves from the gain side and it is not affected when the kink moves in the opposite direction. A two degree of freedom collective variable model is shown to be capable of reproducing principal findings of the present work.
Received: 29.12.2014
English version:
Journal of Experimental and Theoretical Physics Letters, 2015, Volume 101, Issue 7, Pages 497–502
DOI: https://doi.org/10.1134/S0021364015070140
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. Saadatmand, S. V. Dmitriev, D.I. Borisov, P. G. Kevrekidis, M. A. Fatykhov, K. Javidan, “The effect of the $\phi^4$ kink's internal mode during scattering on $\mathcal{PT}$-symmetric defect”, Pis'ma v Zh. Èksper. Teoret. Fiz., 101:7 (2015), 550–555; JETP Letters, 101:7 (2015), 497–502
Citation in format AMSBIB
\Bibitem{SaaDmiBor15}
\by D.~Saadatmand, S.~V.~Dmitriev, D.I.~Borisov, P.~G.~Kevrekidis, M.~A.~Fatykhov, K.~Javidan
\paper The effect of the $\phi^4$ kink's internal mode during scattering on~$\mathcal{PT}$-symmetric defect
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 101
\issue 7
\pages 550--555
\mathnet{http://mi.mathnet.ru/jetpl4602}
\crossref{https://doi.org/10.7868/S0370274X15070140}
\elib{https://elibrary.ru/item.asp?id=23459606}
\transl
\jour JETP Letters
\yr 2015
\vol 101
\issue 7
\pages 497--502
\crossref{https://doi.org/10.1134/S0021364015070140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356457700014}
\elib{https://elibrary.ru/item.asp?id=23988471}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935839478}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4602
  • https://www.mathnet.ru/eng/jetpl/v101/i7/p550
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :43
    References:48
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024