Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2015, Volume 101, Issue 3, Pages 194–199
DOI: https://doi.org/10.7868/S0370274X15030091
(Mi jetpl4544)
 

This article is cited in 10 scientific papers (total in 10 papers)

CONDENSED MATTER

Effect of exciton dragging by a surface acoustic wave

V. M. Kovalevab, A. V. Chaplikcb

a Novosibirsk State Technical University
b Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
References:
Abstract: We present the theory of the effect of exciton dragging by a Rayleigh surface acoustic wave at temperatures above the condensation temperature of the exciton gas and at zero temperature, where the effects of the Bose–Einstein condensation of the exciton gas are most pronounced. The magnitude of the acoustic drag flux in the exciton gas at high temperatures has been calculated taking into account the exciton-exciton interaction. It has been shown that the drag flux at typical experimental parameters (at a given intensity of the surface acoustic wave (SAW)) is independent of the frequency of the acoustic wave, whereas the interaction between excitons leads to screening of the SAW-induced perturbation, which results in an exponentially fast decrease in the drag flux with an increase in the exciton density. At low temperatures, in the presence of a condensate, the drag flux of condensate particles exhibits a resonance character when the velocity of Bogoliubov excitations approaches the velocity of the acoustic wave and the magnitude of the flux is linear in the SAW frequency. The drag flux of the above-condensate particles has a threshold character: the above-condensate particles are dragged by the wave at a velocity of the acoustic wave higher than the bogolon velocity. The magnitude of the above-condensate flux is inversely proportional to the SAW frequency.
Received: 09.12.2014
English version:
Journal of Experimental and Theoretical Physics Letters, 2015, Volume 101, Issue 3, Pages 177–182
DOI: https://doi.org/10.1134/S002136401503008X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. M. Kovalev, A. V. Chaplik, “Effect of exciton dragging by a surface acoustic wave”, Pis'ma v Zh. Èksper. Teoret. Fiz., 101:3 (2015), 194–199; JETP Letters, 101:3 (2015), 177–182
Citation in format AMSBIB
\Bibitem{KovCha15}
\by V.~M.~Kovalev, A.~V.~Chaplik
\paper Effect of exciton dragging by a surface acoustic wave
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2015
\vol 101
\issue 3
\pages 194--199
\mathnet{http://mi.mathnet.ru/jetpl4544}
\crossref{https://doi.org/10.7868/S0370274X15030091}
\elib{https://elibrary.ru/item.asp?id=23286522}
\transl
\jour JETP Letters
\yr 2015
\vol 101
\issue 3
\pages 177--182
\crossref{https://doi.org/10.1134/S002136401503008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352785500009}
\elib{https://elibrary.ru/item.asp?id=24025794}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928657162}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4544
  • https://www.mathnet.ru/eng/jetpl/v101/i3/p194
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :38
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024