Abstract:
The generalized Wiener–Hopf method was used to derive, on the basis of the microscopic BCS theory of superconductivity, the effective boundary conditions to the Ginzburg–Landau equations at the interface of two (including uncommon) superconductors with different transition temperatures in the absence of reflection from the boundary. According to these conditions, the order parameter and its derivative undergo jumps at the interface.
Citation:
E. A. Shapoval, “On the boundary conditions to the Ginzburg-Landau equations at the interface of two superconductors with different transition temperatures”, Pis'ma v Zh. Èksper. Teoret. Fiz., 74:4 (2001), 224–228; JETP Letters, 74:4 (2001), 204–208
\Bibitem{Sha01}
\by E.~A.~Shapoval
\paper On the boundary conditions to the Ginzburg-Landau equations at the interface of two superconductors with different transition temperatures
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2001
\vol 74
\issue 4
\pages 224--228
\mathnet{http://mi.mathnet.ru/jetpl4189}
\transl
\jour JETP Letters
\yr 2001
\vol 74
\issue 4
\pages 204--208
\crossref{https://doi.org/10.1134/1.1413549}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0038895158}
Linking options:
https://www.mathnet.ru/eng/jetpl4189
https://www.mathnet.ru/eng/jetpl/v74/i4/p224
This publication is cited in the following 4 articles:
K Tynyshtykbayev, Z Insepov, J. Phys.: Conf. Ser., 1696:1 (2020), 012025
O.N. Shevtsova, Mathematics and Computers in Simulation, 82:7 (2012), 1298
G A Emelchenko, A A Zhokhov, V M Masalov, M Yu Maximuk, T N Fursova, A V Bazhenov, I I Zverkova, S S Khasanov, E A Steinman, A N Tereshenko, Nanotechnology, 21:47 (2010), 475604
O N Shevtsova, Supercond. Sci. Technol., 21:6 (2008), 065010