Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2014, Volume 100, Issue 4, Pages 297–304
DOI: https://doi.org/10.7868/S0370274X14160115
(Mi jetpl4105)
 

This article is cited in 28 scientific papers (total in 28 papers)

METHODS OF THEORETICAL PHYSICS

Towards matrix model representation of HOMFLY polynomials

A. Aleksandrovabc, A. D. Mironovda, A. Morozova, A. A. Morozovefa

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b Freiburg Institute for Advanced Studies, University of Freiburg
c Mathematics Institute, University of Freiburg
d P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow
e Chelyabinsk State University
f M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: We investigate possibilities of generalizing the TBEM (Tierz, Brini–Eynard–Mariño) eigenvalue matrix model, which represents the non-normalized colored HOMFLY polynomials for torus knots as averages of the corresponding characters. We look for a model of the same type, which is a usual Chern–Simons mixture of the Gaussian potential, typical for Hermitean models, and the sine Vandermonde factors, typical for the unitary ones. We mostly concentrate on the family of twist knots, which contains a single torus knot, the trefoil. It turns out that for the trefoil the TBEM measure is provided by an action of Laplace exponential on the Jones polynomial. This procedure can be applied to arbitrary knots and provides a TBEM-like integral representation for the $N=2$ case. However, beyond the torus family, both the measure and its lifting to larger $N$ contain non-trivial corrections in $\hbar=\log q$. A possibility could be to absorb these corrections into a deformation of the Laplace evolution by higher Casimir and/or cut-and-join operators, in the spirit of Hurwitz $\tau$-function approach to knot theory, but this remains a subject for future investigation.
Received: 16.07.2014
English version:
Journal of Experimental and Theoretical Physics Letters, 2014, Volume 100, Issue 4, Pages 271–278
DOI: https://doi.org/10.1134/S0021364014160036
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Aleksandrov, A. D. Mironov, A. Morozov, A. A. Morozov, “Towards matrix model representation of HOMFLY polynomials”, Pis'ma v Zh. Èksper. Teoret. Fiz., 100:4 (2014), 297–304; JETP Letters, 100:4 (2014), 271–278
Citation in format AMSBIB
\Bibitem{AleMirMor14}
\by A.~Aleksandrov, A.~D.~Mironov, A.~Morozov, A.~A.~Morozov
\paper Towards matrix model representation of HOMFLY polynomials
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2014
\vol 100
\issue 4
\pages 297--304
\mathnet{http://mi.mathnet.ru/jetpl4105}
\crossref{https://doi.org/10.7868/S0370274X14160115}
\elib{https://elibrary.ru/item.asp?id=21997965}
\transl
\jour JETP Letters
\yr 2014
\vol 100
\issue 4
\pages 271--278
\crossref{https://doi.org/10.1134/S0021364014160036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344615700011}
\elib{https://elibrary.ru/item.asp?id=24029756}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920884147}
Linking options:
  • https://www.mathnet.ru/eng/jetpl4105
  • https://www.mathnet.ru/eng/jetpl/v100/i4/p297
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :72
    References:59
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024