Abstract:
Single-shot ablative spallation and fragmentation thresholds, as well as corresponding ablative crater depths, were measured on the surface of iron using optical interferometry, for different ultrashort laser pulse widths in the range $\tau_{\text{las}}=(0.3{-}3.6)\,$ps. The nonmonotonic dependence of these thresholds on фlas with the minimum near $1.2$ ps (the characteristic electron-phonon relaxation time $\tau_{ep}$) represents transport and emission relaxation phenomena for nonthermalized and thermalized carriers, generated by sub- and picosecond laser pulses, respectively. Compared to rather slow spallative ablation, much faster–picosecond–fragmentation ablation of the iron surface through hydrodynamic expansion of its supercritical fluid ceased for $\tau_{\text{las}}>\tau_{ep}$ as a result of evaporative cooling.
Citation:
I. A. Artyukov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses”, Pis'ma v Zh. Èksper. Teoret. Fiz., 99:1 (2014), 54–58; JETP Letters, 99:1 (2014), 51–55
\Bibitem{ArtZayIon14}
\by I.~A.~Artyukov, D.~A.~Zayarnyi, A.~A.~Ionin, S.~I.~Kudryashov, S.~V.~Makarov, P.~N.~Saltuganov
\paper Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2014
\vol 99
\issue 1
\pages 54--58
\mathnet{http://mi.mathnet.ru/jetpl3635}
\crossref{https://doi.org/10.7868/S0370274X14010111}
\elib{https://elibrary.ru/item.asp?id=21305874}
\transl
\jour JETP Letters
\yr 2014
\vol 99
\issue 1
\pages 51--55
\crossref{https://doi.org/10.1134/S0021364014010020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333470400011}
\elib{https://elibrary.ru/item.asp?id=21869665}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897101165}
Linking options:
https://www.mathnet.ru/eng/jetpl3635
https://www.mathnet.ru/eng/jetpl/v99/i1/p54
This publication is cited in the following 51 articles:
Anna Og Dikovska, Daniela Karashanova, Genoveva Atanasova, Georgi Avdeev, Petar Atanasov, Nikolay N. Nedyalkov, Coatings, 14:5 (2024), 527
S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, S. A. Romashevskii, E. V. Struleva, O. V. Chefonov, M. B. Agranat, Pisma v ZhETF, 120:8 (2024), 605–614
S. I. Ashitkov, P. S. Komarov, A. V. Ovchinnikov, S. A. Romashevskiy, E. V. Struleva, O. V. Chefonov, M. B. Agranat, Jetp Lett., 120:8 (2024), 580
N. E. Efimov, D. N. Sinelnikov, M. V. Grishaev, Yu. M. Gasparyan, S. A. Krat, I. A. Sorokin, Phys. Atom. Nuclei, 87:12 (2024), 1899
Denys Moskal, Jiri Martan, Milan Honner, Carlos Beltrami, Max-Jonathan Kleefoot, Vladislav Lang, International Journal of Heat and Mass Transfer, 213 (2023), 124328
Timothy Maclucas, Lukas Daut, Philipp Grützmacher, Maria Agustina Guitar, Volker Presser, Carsten Gachot, Sebastian Suarez, Frank Mücklich, Friction, 11:7 (2023), 1276
M. V. Zhidkov, T. N. Vershinina, O. A. Golosova, S. I. Kudryashov, A. A. Ionin, Opt. Laser Technol., 131 (2020), 106370
D. W. Mueller, T. Fox, Ph. G. Gruetzmacher, S. Suarez, F. Muecklich, Sci Rep, 10:1 (2020), 3647
R. Yi, D. Zhao, J. Oelmann, S. Brezinsek, M. Rasinski, M. Mayer, Ch. P. Dhard, D. Naujoks, L. Liu, J. Qu, W7-X Team, Appl. Surf. Sci., 532 (2020), 147185
D. W. Mueller, A. Holtsch, S. Loesslein, Ch. Pauly, Ch. Spengler, S. Grandthyll, K. Jacobs, F. Muecklich, F. Mueller, Langmuir, 36:45 (2020), 13415–13425
High Temperature, 58:1 (2020), 148–150
Daniel Metzner, Markus Olbrich, Peter Lickschat, Alexander Horn, Steffen Weißmantel, Lasers Manuf. Mater. Process., 7:4 (2020), 478