Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2013, Volume 98, Issue 11, Pages 767–771
DOI: https://doi.org/10.7868/S0370274X13230070
(Mi jetpl3589)
 

This article is cited in 28 scientific papers (total in 28 papers)

PLASMA, HYDRO- AND GAS DYNAMICS

The complex singularity of a Stokes wave

S. A. Dyachenkoa, P. M. Lushnikovab, A. O. Korotkevichab

a Department of Mathematics and Statistics, University of New Mexico
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
References:
Abstract: Two-dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth can be described by a conformal map of the fluid domain into the complex lower half-plane. Stokes wave is the fully nonlinear gravity wave propagating with the constant velocity. The increase of the scaled wave height $H/\lambda$ from the linear limit $H/\lambda=0$ to the critical value $H_{\max}/\lambda$ marks the transition from the limit of almost linear wave to a strongly nonlinear limiting Stokes wave. Here $H$ is the wave height and $\lambda$ is the wavelength. We simulated fully nonlinear Euler equations, reformulated in terms of conformal variables, to find Stokes waves for different wave heights. Analyzing spectra of these solutions we found in conformal variables, at each Stokes wave height, the distance $v_c$ from the lowest singularity in the upper half-plane to the real line which corresponds to the fluid free surface. We also identified that this singularity is the square-root branch point. The limiting Stokes wave emerges as the singularity reaches the fluid surface. From the analysis of data for $v_c\to 0$ we suggest a new power law scaling $v_c\propto (H_{\max}-H)^{3/2}$ as well as new estimate $H_{\max}/\lambda \simeq 0.1410633$.
Received: 07.11.2013
English version:
Journal of Experimental and Theoretical Physics Letters, 2013, Volume 98, Issue 11, Pages 675–679
DOI: https://doi.org/10.1134/S0021364013240077
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. A. Dyachenko, P. M. Lushnikov, A. O. Korotkevich, “The complex singularity of a Stokes wave”, Pis'ma v Zh. Èksper. Teoret. Fiz., 98:11 (2013), 767–771; JETP Letters, 98:11 (2013), 675–679
Citation in format AMSBIB
\Bibitem{DyaLusKor13}
\by S.~A.~Dyachenko, P.~M.~Lushnikov, A.~O.~Korotkevich
\paper The complex singularity of a Stokes wave
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2013
\vol 98
\issue 11
\pages 767--771
\mathnet{http://mi.mathnet.ru/jetpl3589}
\crossref{https://doi.org/10.7868/S0370274X13230070}
\elib{https://elibrary.ru/item.asp?id=21197161}
\transl
\jour JETP Letters
\yr 2013
\vol 98
\issue 11
\pages 675--679
\crossref{https://doi.org/10.1134/S0021364013240077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331717700007}
\elib{https://elibrary.ru/item.asp?id=24048375}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926295118}
Linking options:
  • https://www.mathnet.ru/eng/jetpl3589
  • https://www.mathnet.ru/eng/jetpl/v98/i11/p767
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :66
    References:53
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024