Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2012, Volume 96, Issue 11, Pages 783–789 (Mi jetpl3295)  

This article is cited in 9 scientific papers (total in 9 papers)

PLASMA, HYDRO- AND GAS DYNAMICS

Statistical properties of freely decaying two-dimensional hydrodynamic turbulence

A. N. Kudryavtsevab, E. A. Kuznetsovcdb, E. V. Sereshchenkoaeb

a Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c P. N. Lebedev Physical Institute, Russian Academy of Sciences
d L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
e Far Eastern Federal University, Vladivostok
References:
Abstract: Statistical characteristics of freely decaying two-dimensional hydrodynamic turbulence at high Reynolds numbers are numerically studied. In particular, numerical experiments (with resolution up to $8192\times 8192$) provide a Kraichnan-type turbulence spectrum $E_k\sim k^{-3}$. By means of spatial filtration, it is found that the main contribution to the spectrum comes from sharp vorticity gradients in the form of quasi-shocks. Such quasi-singularities are responsible for a strong angular dependence of the spectrum owing to well-localized (in terms of the angle) jets with minor and/or large overlapping. In each jet, the spectrum decreases as $k^{-3}$. The behavior of the third-order structure function accurately agrees with the Kraichnan direct cascade concept corresponding to a constant enstrophy flux. It is shown that the power law exponents $\zeta_n$ for higher structure functions grow with n more slowly than the linear dependence, thus indicating turbulence intermittency.
Received: 02.10.2012
Revised: 25.10.2012
English version:
Journal of Experimental and Theoretical Physics Letters, 2012, Volume 96, Issue 11, Pages 699–705
DOI: https://doi.org/10.1134/S0021364012230105
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Kudryavtsev, E. A. Kuznetsov, E. V. Sereshchenko, “Statistical properties of freely decaying two-dimensional hydrodynamic turbulence”, Pis'ma v Zh. Èksper. Teoret. Fiz., 96:11 (2012), 783–789; JETP Letters, 96:11 (2012), 699–705
Citation in format AMSBIB
\Bibitem{KudKuzSer12}
\by A.~N.~Kudryavtsev, E.~A.~Kuznetsov, E.~V.~Sereshchenko
\paper Statistical properties of freely decaying two-dimensional hydrodynamic turbulence
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2012
\vol 96
\issue 11
\pages 783--789
\mathnet{http://mi.mathnet.ru/jetpl3295}
\elib{https://elibrary.ru/item.asp?id=18311792}
\transl
\jour JETP Letters
\yr 2012
\vol 96
\issue 11
\pages 699--705
\crossref{https://doi.org/10.1134/S0021364012230105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315505400003}
\elib{https://elibrary.ru/item.asp?id=20431970}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874575598}
Linking options:
  • https://www.mathnet.ru/eng/jetpl3295
  • https://www.mathnet.ru/eng/jetpl/v96/i11/p783
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :78
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024