Abstract:
Raman spectra of the MgB2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼590cm−1 related to the E2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼5GPa exhibits a change in the slope as well as a «hysteresis» effect in the frequency vs. pressure behavior. These singularities in the E2g mode behavior under pressure support the suggestion that MgB2 may undergo a pressure-induced topological electronic transition.
Citation:
K. P. Meletov, M. P. Kulakov, N. N. Kolesnikov, J. Arvanitidis, G. A. Kourouklis, “Raman spectra of MgB2 at high pressure and topological electronic transition”, Pis'ma v Zh. Èksper. Teoret. Fiz., 75:8 (2002), 479–482; JETP Letters, 75:8 (2002), 406–409
\Bibitem{MelKulKol02}
\by K.~P.~Meletov, M.~P.~Kulakov, N.~N.~Kolesnikov, J.~Arvanitidis, G.~A.~Kourouklis
\paper Raman spectra of MgB$\mathbf{_2}$ at high pressure and topological electronic transition
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2002
\vol 75
\issue 8
\pages 479--482
\mathnet{http://mi.mathnet.ru/jetpl3089}
\transl
\jour JETP Letters
\yr 2002
\vol 75
\issue 8
\pages 406--409
\crossref{https://doi.org/10.1134/1.1490010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0013116212}
Linking options:
https://www.mathnet.ru/eng/jetpl3089
https://www.mathnet.ru/eng/jetpl/v75/i8/p479
This publication is cited in the following 17 articles:
Ha H. Pham, An T. Pham, Phi Thi Huong, Nguyen Hoang Nam, Nurhidayah M. Hapipi, Soo Kien Chen, Muralidhar Miryala, Dzung T. Tran, Jungseek Hwang, Yu-Seong Seo, Dang T.B. Hop, Nguyen Thanh Binh, Duc H. Tran, Ceramics International, 49:21 (2023), 34053
Ha H. Pham, Tien Le, The Nghia Nguyen, Nguyen Hoang Nam, Nhung T. Nguyen, Min Kyun Sohn, Dae Joon Kang, Tuson Park, Jinyoung Yun, Yeonkyu Lee, Jeehoon Kim, Duc H. Tran, Won Nam Kang, Ceramics International, 49:12 (2023), 20586
Bera A., Singh A., Muthu D.V.S., Waghmare U.V., Sood A.K., J. Phys.-Condes. Matter, 29:10 (2017), 105403
W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, H. M. Jin, Phys. Rev. B, 77:9 (2008)
W. X. Li, R. H. Chen, Y. Li, M. Y. Zhu, H. M. Jin, R. Zeng, S. X. Dou, B. Lu, Journal of Applied Physics, 103:1 (2008)
K Vinod, Neson Varghese, U Syamaprasad, Supercond. Sci. Technol., 20:10 (2007), R31
Oliver Tschauner, Daniel Errandonea, George Serghiou, Physica B: Condensed Matter, 371:1 (2006), 88
Alka B. Garg, A.K. Verma, P. Modak, D.M. Gaitonde, R.S. Rao, V. Vijayakumar, B.K. Godwal, Solid State Communications, 135:5 (2005), 285
P. Modak, A. K. Verma, D. M. Gaitonde, R. S. Rao, B. K. Godwal, Phys. Rev. B, 70:18 (2004)
B. K. Godwal, P. Modak, A. K. Verma, D. M. Gaitonde And, R. S. Rao, High Pressure Research, 24:4 (2004), 525
H. Suderow, V. G. Tissen, J. P. Brison, J. L. Martínez, S. Vieira, P. Lejay, S. Lee, S. Tajima, Phys. Rev. B, 70:13 (2004)
J. Arvanitidis, K. Papagelis, K. Prassides, G.A. Kourouklis, S. Ves, T. Takenobu, Y. Iwasa, Journal of Physics and Chemistry of Solids, 65:1 (2004), 73
K. A. Yates, Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, M. G. Blamire, Phys. Rev. B, 68:22 (2003)
H. Martinho, C. Rettori, P.G. Pagliuso, A.A. Martin, N.O. Moreno, J.L. Sarrao, Solid State Communications, 125:9 (2003), 499
V. A. Ivanov, M. A. Smondyrev, J. T. Devreese, Phys. Rev. B, 66:13 (2002)
K. P. Meletov, J. Arvanitidis, S. Assimopoulos, G. A. Kourouklis, B. Sundqvist, J. Exp. Theor. Phys., 95:4 (2002), 736