Abstract:
Evolution of X-ray diffraction patterns in FeBO3 under high pressures up to 63 GPa has been investigated at room temperature in a diamond anvil cell. A structural phase transition at pressure of 53±2GPa was found for the first time. The transition is of the first- order type with the hysteresisless drop of the reduced unit cell volume of about 8.6%. Apparently, the transition is isostructural. At pressures below the transition, the equation of state for FeBO3 was fitted. In approximation of the third order Birch-Murnagan equation of state, the bulk modulus K and its first pressure derivative K′ were found to be 255±25GPa and 5.0±1.2, respectively.
Citation:
A. G. Gavriliuk, I. A. Trojan, R. Boehler, M. I. Eremets, A. Zerr, I. S. Lyubutin, V. A. Sarkisyan, “Equation of state and structural phase transition in FeBO3 at high pressure”, Pis'ma v Zh. Èksper. Teoret. Fiz., 75:1 (2002), 25–27; JETP Letters, 75:1 (2002), 23–25
\Bibitem{GavTroBoe02}
\by A.~G.~Gavriliuk, I.~A.~Trojan, R.~Boehler, M.~I.~Eremets, A.~Zerr, I.~S.~Lyubutin, V.~A.~Sarkisyan
\paper Equation of state and structural phase transition in FeBO$\mathbf{_3}$ at high pressure
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2002
\vol 75
\issue 1
\pages 25--27
\mathnet{http://mi.mathnet.ru/jetpl3016}
\transl
\jour JETP Letters
\yr 2002
\vol 75
\issue 1
\pages 23--25
\crossref{https://doi.org/10.1134/1.1463109}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0040668184}
Linking options:
https://www.mathnet.ru/eng/jetpl3016
https://www.mathnet.ru/eng/jetpl/v75/i1/p25
This publication is cited in the following 28 articles:
Yu. S. Orlov, S. V. Nikolaev, V. A. Dudnikov, V. A. Gavrichkov, S. G. Ovchinnikov, Phys. Usp., 66:7 (2023), 647–672
Yoshiyuki Kawazoe, Takeshi Kanomata, Ryunosuke Note, High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure, 2023, 278
Weiwei Dong, Konstantin Glazyrin, Saiana Khandarkhaeva, Timofey Fedotenko, Jozef Bednarčík, Eran Greenberg, Leonid Dubrovinsky, Natalia Dubrovinskaia, Hanns-Peter Liermann, J Synchrotron Rad, 29:5 (2022), 1167
Weiming Xu, Weiwei Dong, Samar Layek, Mark Shulman, Konstantin Glazyrin, Elena Bykova, Maxim Bykov, Michael Hanfland, Moshe P. Pasternak, Ivan Leonov, Eran Greenberg, Gregory Kh. Rozenberg, Sci Rep, 12:1 (2022)
N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, A. G. Kulikov, V. V. Artemov, Yu. A. Mogilenec, M. B. Strugatsky, JETP Letters, 112:6 (2020), 352–356
Ovchinnikov S.G., Rudenko V.V., Kazak N.V., Edelman I.S., Gavrichkov V.A., J. Exp. Theor. Phys., 131:1, SI (2020), 177–188
Chernyshev V.A., Avram C.N., AIP Conference Proceedings, 2218, eds. Lungu M., Popescu A., Sporea C., Amer Inst Physics, 2020, 040005
Orlov Yu.S., Nikolaev V S., Ovchinnikov S.G., J. Exp. Theor. Phys., 129:6 (2019), 1062–1069
JETP Letters, 106:5 (2017), 317–323
Kim J. Struzhkin V.V. Ovchinnikov S.G. Orlov Yu. Shvyd'ko Yu. Upton M.H. Casa D. Gavriliuk A.G. Sinogeikin S.V., EPL, 108:3 (2014), 37001
Friedrich A., Winkler B., Morgenroth W., Ruiz-Fuertes J., Koch-Mueller M., Rhede D., Milman V., Phys. Rev. B, 90:9 (2014), 094105
Santamaria-Perez D., Gomis O., Sans J.A., Ortiz H.M., Vegas A., Errandonea D., Ruiz-Fuertes J., Martinez-Garcia D., Garcia-Domene B., Pereira A.L.J., Javier Manjon F., Rodriguez-Hernandez P., Munoz A., Piccinelli F., Bettinelli M., Popescu C., J. Phys. Chem. C, 118:8 (2014), 4354–4361
I. A. Trojan, A. G. Gavriliuk, S. G. Ovchinnikov, I. S. Lyubutin, N. V. Kazak, JETP Letters, 94:10 (2011), 748–752
A. Yu. Gufan, Phys. Solid State, 53:11 (2011), 2343
I. S. Lyubutin, A. G. Gavriliuk, Phys. Usp., 52:10 (2009), 989–1017
I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, V. V. Struzhkin, Phys. Rev. B, 79:8 (2009)
JETP Letters, 88:11 (2008), 762–766
Johanna S. Knyrim, Hubert Huppertz, Journal of Solid State Chemistry, 181:8 (2008), 2092
JETP Letters, 86:3 (2007), 197–201
A G Gavriliuk, S A Kharlamova, I S Lyubutin, S G Ovchinnikov, A M Potseluyko, I A Trojan, V N Zabluda, J. Phys.: Condens. Matter, 17:48 (2005), 7599