|
Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2002, Volume 76, Issue 8, Page 565
(Mi jetpl2954)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
FIELDS, PARTICLES, AND NUCLEI
Is $\mathbf{G}$ a conversion factor or a fundamental unit?
G. Fiorentinia, L. B. Okun'b, M. I. Vysotskyb a INFN, Sezione di Ferrara, Ferrara
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
Abstract:
By using fundamental units $c, \hbar, G$ as conversion factors one can easily transform the dimensions of all observables. In particular one can make them all «geometrical», or dimensionless. However this has no impact on the fact that there are three fundamental units, $G$ being one of them. Only experiment can tell us whether $G$ is basically fundamental.
Received: 16.09.2002 Revised: 23.09.2002
Citation:
G. Fiorentini, L. B. Okun', M. I. Vysotsky, “Is $\mathbf{G}$ a conversion factor or a fundamental unit?”, Pis'ma v Zh. Èksper. Teoret. Fiz., 76:8 (2002), 565; JETP Letters, 76:8 (2002), 485
Linking options:
https://www.mathnet.ru/eng/jetpl2954 https://www.mathnet.ru/eng/jetpl/v76/i8/p565
|
Statistics & downloads: |
Abstract page: | 150 | Full-text PDF : | 54 | References: | 38 |
|