Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2011, Volume 94, Issue 11, Pages 904–910 (Mi jetpl2399)  

This article is cited in 14 scientific papers (total in 14 papers)

BIOPHYSICS

Curvature-dependent excitation propagation in cultured cardiac tissue

S. Kadotaa, M. W. Kayb, N. Magomea, K. I. Agladzeca

a Institute for Integrated Cell-Material Sciences, Kyoto University
b Department of Electrical and Computer Engineering, The George Washington University
c Moscow Institute of Physics and Technology
References:
Abstract: The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, did not affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.
Received: 14.10.2011
English version:
Journal of Experimental and Theoretical Physics Letters, 2011, Volume 94, Issue 11, Pages 824–830
DOI: https://doi.org/10.1134/S0021364011230044
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Kadota, M. W. Kay, N. Magome, K. I. Agladze, “Curvature-dependent excitation propagation in cultured cardiac tissue”, Pis'ma v Zh. Èksper. Teoret. Fiz., 94:11 (2011), 904–910; JETP Letters, 94:11 (2011), 824–830
Citation in format AMSBIB
\Bibitem{KadKayMag11}
\by S.~Kadota, M.~W.~Kay, N.~Magome, K.~I.~Agladze
\paper Curvature-dependent excitation propagation in cultured cardiac tissue
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2011
\vol 94
\issue 11
\pages 904--910
\mathnet{http://mi.mathnet.ru/jetpl2399}
\elib{https://elibrary.ru/item.asp?id=17246135}
\transl
\jour JETP Letters
\yr 2011
\vol 94
\issue 11
\pages 824--830
\crossref{https://doi.org/10.1134/S0021364011230044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146800008}
\elib{https://elibrary.ru/item.asp?id=17975322}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856568106}
Linking options:
  • https://www.mathnet.ru/eng/jetpl2399
  • https://www.mathnet.ru/eng/jetpl/v94/i11/p904
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024