|
Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2004, Volume 79, Issue 5, Pages 286–290
(Mi jetpl2246)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
CONDENSED MATTER
Phase transition in a self-repairing random network
A. S. Ioselevicha, D. S. Lyubshinb a L. D. Landau Institute for Theoretical Physics RAS,
117940 Moscow, Russia
b Landau Institute for Theoretical Physics, 117940 Moscow, Russia
Abstract:
We consider a network, bonds of which are being sequentially removed; that is done at random, but conditioned on the system remaining connected (Self-Repairing Bond Percolation SRBP). This model is the simplest representative of a class of random systems for which forming of isolated clusters is forbidden. It qualitatively describes the process of fabrication of artificial porous materials and degradation of strained polymers. We find a phase transition at a finite concentration of bonds $p=p_c$, at which the backbone of the system vanishes; for all $p<p_c$ the network is a dense fractal.
Received: 05.02.2004
Citation:
A. S. Ioselevich, D. S. Lyubshin, “Phase transition in a self-repairing random network”, Pis'ma v Zh. Èksper. Teoret. Fiz., 79:5 (2004), 286–290; JETP Letters, 79:5 (2004), 231–235
Linking options:
https://www.mathnet.ru/eng/jetpl2246 https://www.mathnet.ru/eng/jetpl/v79/i5/p286
|
Statistics & downloads: |
Abstract page: | 243 | Full-text PDF : | 64 | References: | 57 |
|