Abstract:
X-ray Detected Magnetic Resonance (XDMR) has been measured for the first time on exciting the Fe K-edge in a high quality Yttrium Iron Garnet film epitaxially grown on a Gadolinium Callium Garnet substrate. This challenging experiment required resonant pumping of Yttrium Iron Garnet at high microwave power, i.e. in the foldover regime. X-ray Magnetic Circular Dichroism (XMCD) was used to probe the change in the longitudinal component of the magnetization MZ induced by the precession of magnetic moments located at the iron sites. Since XMCD at the Fe K-edge refers mostly to the equilibrium contribution of magnetically polarized 4p orbital components, XDMR at the Fe K-edge should reflect the precessional dynamics of the latter orbital moments. From the measured precession angle, we show that there is no dynamical quenching of the polarized orbital components at the iron sites in Yttrium Iron Garnet.
Citation:
J. Goulon, A. Rogalev, F. Wilhelm, N. Jaouen, C. Goulon-Ginet, G. Goujon, J. Ben Youssef, M. V. Indenbom, “X-ray detected magnetic resonance at the Fe K-edge in YIG: forced precession of magnetically polarized orbital components”, Pis'ma v Zh. Èksper. Teoret. Fiz., 82:11 (2005), 791–796; JETP Letters, 82:11 (2005), 696–701
\Bibitem{GouRogWil05}
\by J.~Goulon, A.~Rogalev, F.~Wilhelm, N.~Jaouen, C.~Goulon-Ginet, G.~Goujon, J.~Ben Youssef, M.~V.~Indenbom
\paper X-ray detected magnetic resonance at the Fe K-edge in YIG: forced precession of magnetically polarized orbital components
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2005
\vol 82
\issue 11
\pages 791--796
\mathnet{http://mi.mathnet.ru/jetpl1632}
\transl
\jour JETP Letters
\yr 2005
\vol 82
\issue 11
\pages 696--701
\crossref{https://doi.org/10.1134/1.2171722}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234969000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31644449083}
Linking options:
https://www.mathnet.ru/eng/jetpl1632
https://www.mathnet.ru/eng/jetpl/v82/i11/p791
This publication is cited in the following 44 articles:
Thomas Feggeler, Abraham Levitan, Matthew A. Marcus, Hendrik Ohldag, David A. Shapiro, Journal of Electron Spectroscopy and Related Phenomena, 267 (2023), 147381
David M Burn, Jheng-Cyuan Lin, Ryuji Fujita, Barat Achinuq, Joshua Bibby, Angadjit Singh, Andreas Frisk, Gerrit van der Laan, Thorsten Hesjedal, Nanotechnology, 34:27 (2023), 275001
Gerrit van der Laan, Thorsten Hesjedal, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 540 (2023), 85
Klewe C., Emori S., Li Q., Yang M., Gray B.A., Jeon H.-M., Howe B.M., Suzuki Y., Qiu Z.Q., Shafer P., Arenholz E., New J. Phys., 24:1 (2022), 013030
Thomas Feggeler, Ralf Meckenstock, Detlef Spoddig, Christian Schöppner, Benjamin Zingsem, Taddäus Schaffers, Hendrik Ohldag, Heiko Wende, Michael Farle, Andreas Ney, Katharina Ollefs, Sci Rep, 12:1 (2022)
Burn D.M., Zhang Sh., Zhai K., Chai Y., Sun Y., van der Laan G., Hesjedal T., Nano Lett., 20:1 (2020), 345–352
Christoph Klewe, Qian Li, Mengmeng Yang, Alpha T. N'Diaye, David M. Burn, Thorsten Hesjedal, Adriana I. Figueroa, Chanyong Hwang, Jia Li, Robert J. Hicken, Padraic Shafer, Elke Arenholz, Gerrit van der Laan, Ziqiang Qiu, Synchrotron Radiation News, 33:2 (2020), 12
Chumak V A., Spintronics Handbook: Spin Transport and Magnetism, Vol 1: Metallic Spintronics, 2Nd Edition, eds. Tsymbal E., Zutic I., Crc Press-Taylor & Francis Group, 2019, 247–302
Schaffers T., Meckenstock R., Spoddig D., Feggeler T., Ollefs K., Schoeppner C., Bonetti S., Ohldag H., Farle M., Ney A., Rev. Sci. Instrum., 88:9 (2017), 093703
van der Laan G., J. Electron Spectrosc. Relat. Phenom., 220:SI (2017), 137–146
Figueroa A.I., Baker A.A., Collins-McIntyre L.J., Hesjedal T., van der Laan G., J. Magn. Magn. Mater., 400 (2016), 178–183
Stenning G.B.G., Shelford L.R., Cavill S.A., Hoffmann F., Haertinger M., Hesjedal T., Woltersdorf G., Bowden G.J., Gregory S.A., Back C.H., de Groot P.A.J., van der Laan G., New J. Phys., 17 (2015), 013019
Ollefs K., Meckenstock R., Spoddig D., Roemer F.M., Hassel Ch., Schoeppner Ch., Ney V., Farle M., Ney A., J. Appl. Phys., 117:22 (2015), 223906
Giorgio Rossi, Synchrotron Radiation, 2015, 539
van der Laan G., Figueroa A.I., Coord. Chem. Rev., 277:SI (2014), 95–129
Goulon J., Brouder Ch., Rogalev A., Goujon G., Wilhelm F., J. Magn. Magn. Mater., 366 (2014), 1–23
Warnicke P., Knut R., Wahlstrom E., Karis O., Bailey W.E., Arena D.A., J. Appl. Phys., 113:3 (2013), 033904