Abstract:
An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate Anano of an excited optical center in the nanoparticle to the decay rate Abulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio Anano/Abulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate Anano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio Anano/Abulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for Anano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio Anano/Abulk turns out to depend on the local-field model. The formulas for the emission and absorption cross sections σnano for nanoparticles are derived. It is shown that the ratios σnano/σbulk and Anano/Abulk are not equal in general, which can be used to improve the lasing parameters. The experimentally determined and theoretically evaluated decay times of metastable states of dopant rare-earth ions in crystalline YAG and Y2O3 nanoparticles are compared with the corresponding values for bulk crystals of the same structure.
Citation:
K. K. Pukhov, T. T. Basiev, Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles”, Pis'ma v Zh. Èksper. Teoret. Fiz., 88:1 (2008), 14–20; JETP Letters, 88:1 (2008), 12–18
Linking options:
https://www.mathnet.ru/eng/jetpl152
https://www.mathnet.ru/eng/jetpl/v88/i1/p14
This publication is cited in the following 51 articles:
Gleb V. Petrov, Daria A. Galkina, Alena M. Koldina, Tatiana V. Grebennikova, Olesya V. Eliseeva, Yana Yu. Chernoryzh, Varvara V. Lebedeva, Anton V. Syroeshkin, Pharmaceutics, 16:2 (2024), 180
Waygen Thor, Albano N. Carneiro Neto, Renaldo T. Moura, Ka-Leung Wong, Peter A. Tanner, Coordination Chemistry Reviews, 517 (2024), 215927
Leonid Dolgov, Elena Orlovskaya, Artem Shaidulin, Ekaterina Vagapova-Hiiesalu, Ljudmila D. Iskhakova, Mihkel Rähn, Aleksandr Liivand, Yurii Orlovskii, Physica B: Condensed Matter, 2024, 416562
Rui Rui Yang, Pin Wang, Fangrui Cheng, bang lan, Yuxiang Yu, Jing Wang, Shi Ye, ACS Appl. Nano Mater., 6:12 (2023), 10023
Manuel Romero, Juan Ramón Sánchez-Valencia, Gabriel Lozano, Hernán Míguez, Nanoscale, 15:37 (2023), 15279
Anton V. Syroeshkin, Gleb V. Petrov, Viktor V. Taranov, Tatiana V. Pleteneva, Alena M. Koldina, Ivan A. Gaydashev, Ekaterina S. Kolyabina, Daria A. Galkina, Ekaterina V. Sorokina, Elena V. Uspenskaya, Ilaha V. Kazimova, Mariya A. Morozova, Varvara V. Lebedeva, Stanislav A. Cherepushkin, Irina V. Tarabrina, Sergey A. Syroeshkin, Alexander V. Tertyshnikov, Tatiana V. Grebennikova, Pharmaceutics, 15:3 (2023), 966
Simon Spelthann, Jonas Thiem, Oliver Melchert, Rajesh Komban, Christoph Gimmler, Ayhan Demicran, Axel Ruehl, Detlev Ristau, Advanced Optical Materials, 11:14 (2023)
Elena Timofeeva, Elena Orlovskaya, Alexandr Popov, Artem Shaidulin, Sergei Kuznetsov, Alexandr Alexandrov, Oleg Uvarov, Yuri Vainer, Gleb Silaev, Mihkel Rähn, Aile Tamm, Stanislav Fedorenko, Yurii Orlovskii, Nanomaterials, 12:21 (2022), 3749
Popov A., Orlovskaya E., Shaidulin A., Vagapova E., Timofeeva E., Dolgov L., Iskhakova L., Uvarov O., Novikov G., Rahn M., Tamm A., Vanetsev A., Fedorenko S., Eliseeva S., Petoud S., Orlovskii Yu., Nanomaterials, 11:11 (2021), 2847
Huang A., Pukhov K.K., Wong K.-L., Tanner P.A., Nanoscale, 13:22 (2021), 10002–10009
Anjun Huang, Ka-Leung Wong, Peter A. Tanner, Optical Materials: X, 10 (2021), 100073
Luo Yu., Li L., Wong H.T., Wong K.-L., Tanner P.A., Small, 16:1 (2020), 1905234, 1905234
Lima F.N., Lima R.P.A., Lyra M.L., Braz. J. Phys., 49:3 (2019), 423–431
Souza A.S., Cortes G.K.R., Lima H., Couto dos Santos M.A., J. Lumines., 210 (2019), 452–456
Tessitore G., Mandl G.A., Brik M.G., Park W., Capobianco J.A., Nanoscale, 11:25 (2019), 12015–12029
K. K. Pukhov, Phys. Solid State, 61:5 (2019), 894–900