Loading [MathJax]/jax/output/SVG/config.js
Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2008, Volume 88, Issue 1, Pages 14–20 (Mi jetpl152)  

This article is cited in 51 scientific papers (total in 51 papers)

ATOMS, SPECTRA, RADIATIONS

Spontaneous emission in dielectric nanoparticles

K. K. Pukhov, T. T. Basiev, Yu. V. Orlovskii

Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russia
References:
Abstract: An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross sections σnano for nanoparticles are derived. It is shown that the ratios σnanobulk and A nano/A bulk are not equal in general, which can be used to improve the lasing parameters. The experimentally determined and theoretically evaluated decay times of metastable states of dopant rare-earth ions in crystalline YAG and Y2O3 nanoparticles are compared with the corresponding values for bulk crystals of the same structure.
Received: 11.03.2008
Revised: 03.06.2008
English version:
Journal of Experimental and Theoretical Physics Letters, 2008, Volume 88, Issue 1, Pages 12–18
DOI: https://doi.org/10.1134/S0021364008130043
Bibliographic databases:
Document Type: Article
PACS: 78.55.-m, 78.67.Bf
Language: Russian


Citation: K. K. Pukhov, T. T. Basiev, Yu. V. Orlovskii, “Spontaneous emission in dielectric nanoparticles”, Pis'ma v Zh. Èksper. Teoret. Fiz., 88:1 (2008), 14–20; JETP Letters, 88:1 (2008), 12–18
Linking options:
  • https://www.mathnet.ru/eng/jetpl152
  • https://www.mathnet.ru/eng/jetpl/v88/i1/p14
  • This publication is cited in the following 51 articles:
    1. Gleb V. Petrov, Daria A. Galkina, Alena M. Koldina, Tatiana V. Grebennikova, Olesya V. Eliseeva, Yana Yu. Chernoryzh, Varvara V. Lebedeva, Anton V. Syroeshkin, Pharmaceutics, 16:2 (2024), 180  crossref
    2. Waygen Thor, Albano N. Carneiro Neto, Renaldo T. Moura, Ka-Leung Wong, Peter A. Tanner, Coordination Chemistry Reviews, 517 (2024), 215927  crossref
    3. Leonid Dolgov, Elena Orlovskaya, Artem Shaidulin, Ekaterina Vagapova-Hiiesalu, Ljudmila D. Iskhakova, Mihkel Rähn, Aleksandr Liivand, Yurii Orlovskii, Physica B: Condensed Matter, 2024, 416562  crossref
    4. Rui Rui Yang, Pin Wang, Fangrui Cheng, bang lan, Yuxiang Yu, Jing Wang, Shi Ye, ACS Appl. Nano Mater., 6:12 (2023), 10023  crossref
    5. Manuel Romero, Juan Ramón Sánchez-Valencia, Gabriel Lozano, Hernán Míguez, Nanoscale, 15:37 (2023), 15279  crossref
    6. Anton V. Syroeshkin, Gleb V. Petrov, Viktor V. Taranov, Tatiana V. Pleteneva, Alena M. Koldina, Ivan A. Gaydashev, Ekaterina S. Kolyabina, Daria A. Galkina, Ekaterina V. Sorokina, Elena V. Uspenskaya, Ilaha V. Kazimova, Mariya A. Morozova, Varvara V. Lebedeva, Stanislav A. Cherepushkin, Irina V. Tarabrina, Sergey A. Syroeshkin, Alexander V. Tertyshnikov, Tatiana V. Grebennikova, Pharmaceutics, 15:3 (2023), 966  crossref
    7. Simon Spelthann, Jonas Thiem, Oliver Melchert, Rajesh Komban, Christoph Gimmler, Ayhan Demicran, Axel Ruehl, Detlev Ristau, Advanced Optical Materials, 11:14 (2023)  crossref
    8. Elena Timofeeva, Elena Orlovskaya, Alexandr Popov, Artem Shaidulin, Sergei Kuznetsov, Alexandr Alexandrov, Oleg Uvarov, Yuri Vainer, Gleb Silaev, Mihkel Rähn, Aile Tamm, Stanislav Fedorenko, Yurii Orlovskii, Nanomaterials, 12:21 (2022), 3749  crossref
    9. Popov A., Orlovskaya E., Shaidulin A., Vagapova E., Timofeeva E., Dolgov L., Iskhakova L., Uvarov O., Novikov G., Rahn M., Tamm A., Vanetsev A., Fedorenko S., Eliseeva S., Petoud S., Orlovskii Yu., Nanomaterials, 11:11 (2021), 2847  crossref  isi  scopus
    10. Huang A., Pukhov K.K., Wong K.-L., Tanner P.A., Nanoscale, 13:22 (2021), 10002–10009  crossref  isi  scopus
    11. Anjun Huang, Ka-Leung Wong, Peter A. Tanner, Optical Materials: X, 10 (2021), 100073  crossref
    12. Luo Yu., Li L., Wong H.T., Wong K.-L., Tanner P.A., Small, 16:1 (2020), 1905234, 1905234  crossref  isi  scopus
    13. Lima F.N., Lima R.P.A., Lyra M.L., Braz. J. Phys., 49:3 (2019), 423–431  crossref  isi  scopus
    14. Souza A.S., Cortes G.K.R., Lima H., Couto dos Santos M.A., J. Lumines., 210 (2019), 452–456  crossref  isi  scopus
    15. Tessitore G., Mandl G.A., Brik M.G., Park W., Capobianco J.A., Nanoscale, 11:25 (2019), 12015–12029  crossref  isi  scopus
    16. K. K. Pukhov, Phys. Solid State, 61:5 (2019), 894–900  mathnet  mathnet  crossref  crossref
    17. Burdukova O.A., Konyshkin V.A., Petukhov V.A., Senatsky V Yu., Zverev P.G., Laser Phys. Lett., 15:9 (2018), 095805  crossref  isi  scopus
    18. Yu.V. Orlovskii, A.V. Popov, E.O. Orlovskaya, A.S. Vanetsev, E.A. Vagapova, M. Rähn, V. Sammelselg, I. Sildos, A.E. Baranchikov, P.V. Grachev, V.B. Loschenov, A.V. Ryabova, Journal of Alloys and Compounds, 756 (2018), 182  crossref
    19. Lima R.P.A., Lima F.N., Lyra M.L., Ann. Phys., 378 (2017), 162–170  crossref  isi  scopus
    20. Scott R., Heckmann J., Prudnikau A.V., Antanovich A., Mikhailov A., Owschimikow N., Artemyev M., Climente J.I., Woggon U., Grosse N.B., Achtstein A.W., Nat. Nanotechnol., 12:12 (2017), 1155+  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:624
    Full-text PDF :201
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025