Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2010, Volume 92, Issue 8, Pages 585–589 (Mi jetpl1446)  

This article is cited in 22 scientific papers (total in 22 papers)

CONDENSED MATTER

Second wind of the Dulong–Petit Law at a quantum critical point

V. A. Khodelabc, J. W. Clarkbc, V. R. Shaginyand, M. V. Zverevae

a Russian Research Centre Kurchatov Institute, Moscow, Russia
b Department of Physics, Washington University in St. Louis
c McDonnell Center for the Space Sciences, Washington University in St. Louis
d Petersburg Nuclear Physics Institute RAS, Gatchina, Russia
e Moscow Institute of Rhysics and Technology, Moscow, Russia
References:
Abstract: Renewed interest in $^3$He physics has been stimulated by experimental observation of non-Fermi-liquid behavior of dense $^3$He films at low temperatures. Abnormal behavior of the specific heat $C(T)$ of two-dimensional liquid $^3$He is demonstrated in the occurrence of a $T$-independent $\beta$ term in $C(T)$. To uncover the origin of this phenomenon, we have considered the group velocity of transverse zero sound propagating in a strongly correlated Fermi liquid. For the first time, it is shown that if two-dimensional liquid $^3$He is located in the vicinity of the quantum critical point associated with a divergent quasiparticle effective mass, the group velocity depends strongly on temperature and vanishes as $T$ is lowered toward zero. The predicted vigorous dependence of the group velocity can be detected in experimental measurements on liquid $^3$He films. We have demonstrated that the contribution to the specific heat coming from the boson part of the free energy due to the transverse zero-sound mode follows the Dulong–Petit Law. In the case of two-dimensional liquid $^3$He, the specific heat becomes independent of temperature at some characteristic temperature of a few mK.
Received: 14.09.2010
English version:
Journal of Experimental and Theoretical Physics Letters, 2010, Volume 92, Issue 8, Pages 532–536
DOI: https://doi.org/10.1134/S0021364010200087
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. A. Khodel, J. W. Clark, V. R. Shaginyan, M. V. Zverev, “Second wind of the Dulong–Petit Law at a quantum critical point”, Pis'ma v Zh. Èksper. Teoret. Fiz., 92:8 (2010), 585–589; JETP Letters, 92:8 (2010), 532–536
Citation in format AMSBIB
\Bibitem{KhoClaSha10}
\by V.~A.~Khodel, J.~W.~Clark, V.~R.~Shaginyan, M.~V.~Zverev
\paper Second wind of the Dulong--Petit Law at a~quantum critical point
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2010
\vol 92
\issue 8
\pages 585--589
\mathnet{http://mi.mathnet.ru/jetpl1446}
\transl
\jour JETP Letters
\yr 2010
\vol 92
\issue 8
\pages 532--536
\crossref{https://doi.org/10.1134/S0021364010200087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286340500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650614635}
Linking options:
  • https://www.mathnet.ru/eng/jetpl1446
  • https://www.mathnet.ru/eng/jetpl/v92/i8/p585
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:1945
    Full-text PDF :59
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024