This article is cited in 6 scientific papers (total in 6 papers)
Engineering Mathematics
Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices
Abstract:
The aim of the paper is to simplify the description of quantum entanglement of multidimensional biometric data and data of another nature. We use a correlation symmetrization procedure based on conservation of quantum superposition entropy codes, supported on the outputs of neural networks converter of biometric data. We give a nomogram of parameter connection having the same correlation with the output entropy for codes with the length 2, 4, 8,…, 256 bits and the formula to convert the coordinate system, simplifying connection of entropy and quantum entanglement value of multidimensional data. We claim that synthesis of correct analytical models having high dimensions connecting quantum entanglement and quantum superposition is possible only for symmetrical mathematical constructions. Obtaining asymmetrical correct data is possible only by processing real biometric images of another nature.
Keywords:
quantum superposition, quantum entanglement, neural network converter of biometric code, symmetrization of multidimensional correlative matrix, entropy.
Citation:
A. I. Ivanov, A. V. Bezyayev, A. I. Gazin, “Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices”, J. Comp. Eng. Math., 4:2 (2017), 3–13
\Bibitem{IvaBezGaz17}
\by A.~I.~Ivanov, A.~V.~Bezyayev, A.~I.~Gazin
\paper Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices
\jour J. Comp. Eng. Math.
\yr 2017
\vol 4
\issue 2
\pages 3--13
\mathnet{http://mi.mathnet.ru/jcem86}
\crossref{https://doi.org/10.14529/jcem170201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670936}
\elib{https://elibrary.ru/item.asp?id=29454741}
Linking options:
https://www.mathnet.ru/eng/jcem86
https://www.mathnet.ru/eng/jcem/v4/i2/p3
This publication is cited in the following 6 articles:
Antonio Díaz-Longueira, Manuel Rubiños, Paula Arcano-Bea, Jose Luis Calvo-Rolle, Héctor Quintián, Francisco Zayas-Gato, “An Intelligent Regression-Based Approach for Predicting a Geothermal Heat Exchanger's Behavior in a Bioclimatic House Context”, Energies, 17:11 (2024), 2706
Antonio Díaz-Longueira, Paula Arcano-Bea, Roberto Casado-Vara, Andrés-José Piñón-Pazos, Esteban Jove, “Virtual active power sensor for eolic self-consumption installations based on wind-related variables”, Logic Journal of the IGPL, 2024
Míriam Timiraos, Jesús F Águila, Elena Arce, Moisés Alberto GarcÍa Núñez, Francisco Zayas-Gato, Héctor Quintián, “Optimizing wastewater treatment plants with advanced feature selection and sensor technologies”, Logic Journal of the IGPL, 2024
Antonio Díaz-Longueira, Paula Arcano-Bea, Míriam Timiraos, Álvaro Michelena, Francisco Javier de Cos Juez, José Luis Calvo-Rolle, Lecture Notes in Networks and Systems, 1173, Distributed Computing and Artificial Intelligence, Special Sessions III - Intelligent Systems Applications, 21st International Conference, 2024, 73
Míriam Timiraos, Antonio Díaz-Longueira, Álvaro Michelena, Francisco Zayas-Gato, Héctor Quintián, Héctor Alaiz-Moretón, Óscar Fontenla-Romero, José Luis Calvo-Rolle, Lecture Notes in Networks and Systems, 742, Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference, 2023, 11
A Gazin, A Ivanov, A Malygin, A Isaeva, “Statistical data representation in the context of increasing construction efficiency”, J. Phys.: Conf. Ser., 1614:1 (2020), 012040