Loading [MathJax]/jax/output/SVG/config.js
Journal of Computational and Engineering Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Comp. Eng. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Computational and Engineering Mathematics, 2016, Volume 3, Issue 2, Pages 40–47
DOI: https://doi.org/10.14529/jcem1602005
(Mi jcem62)
 

This article is cited in 9 scientific papers (total in 9 papers)

Computational Mathematics

Numerical study of a flow of viscoelastic fluid of Kelvin–Voigt having zero order in a magnetic field

S. I. Kadchenkoa, A. О. Kondyukovb

a Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation
b Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russian Federation
Full-text PDF (320 kB) Citations (9)
References:
Abstract: The article developed algorithms for the numerical solution of the initial-boundary problem of the flow of an incompressible viscoelastic Kelvin–Voigt fluid in the Earth's magnetic field. The theorem on an existence and uniqueness of this problem solution is proved using the theory of semilinear Sobolev type equations in the works written by T.G. Sukachev, S.A. Kondyukova. The original initial-boundary problem is transformed to the Cauchy problem for ordinary systems of nonlinear equations by sampling. Algorithms based on the explicit one-step schemes having Runge–Kutta type of seventh-order accuracy with a choice of integration step are used to find a numerical solution of the Cauchy problem. Evaluation of control of calculation accuracy at each time step is carried out by a scheme of the eighth order of accuracy. A time step is chosen according to the results of monitoring. Computational experiments show high computational efficiency of the developed algorithms for solving of the problem considered.
Keywords: magnetohydrodynamics, incompressible viscoelastic fluid, explicit one-step formulas of Runge–Kutta, Sobolev type equations.
Received: 27.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35K70
Language: English
Citation: S. I. Kadchenko, A. О. Kondyukov, “Numerical study of a flow of viscoelastic fluid of Kelvin–Voigt having zero order in a magnetic field”, J. Comp. Eng. Math., 3:2 (2016), 40–47
Citation in format AMSBIB
\Bibitem{KadKon16}
\by S.~I.~Kadchenko, A.~О.~Kondyukov
\paper Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field
\jour J. Comp. Eng. Math.
\yr 2016
\vol 3
\issue 2
\pages 40--47
\mathnet{http://mi.mathnet.ru/jcem62}
\crossref{https://doi.org/10.14529/jcem1602005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3527955}
\zmath{https://zbmath.org/?q=an:06690885}
\elib{https://elibrary.ru/item.asp?id=26399836}
Linking options:
  • https://www.mathnet.ru/eng/jcem62
  • https://www.mathnet.ru/eng/jcem/v3/i2/p40
  • This publication is cited in the following 9 articles:
    1. Zhiyong Si, Qing Wang, Yunxia Wang, “A rotational velocity‐correction projection method for the Kelvin–Voigt viscoelastic fluid equations”, Math Methods in App Sciences, 47:5 (2024), 3469  crossref
    2. Y. Vinod, Suma Nagendrappa Nagappanavar, Sangamesh, K. R. Raghunatha, D. L. Kiran Kumar, “Unsteady triple diffusive oscillatory flow in a Voigt fluid”, J Math Chem, 2024  crossref
    3. Y. Vinod, K. R. Raghunatha, Bassem F. Felemban, Ayman A. Aly, Mustafa Inc, Shahram Rezapour, Suma Nagendrappa Nagappanavar, Sangamesh, “Exploring double diffusive oscillatory flow in a Voigt fluid”, Mod. Phys. Lett. B, 2024  crossref
    4. Mengmeng Duan, Yan Yang, Minfu Feng, “A weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model”, Applied Numerical Mathematics, 184 (2023), 406  crossref
    5. T. G. Sukacheva, “Oskolkov models and Sobolev-type equations”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:1 (2022), 5–22  mathnet  crossref
    6. Zhiyong Si, Qing Wang, Yunxia Wang, “A modified characteristic projection finite element method for the Kelvin-Voigt viscoelastic fluid equations”, Computers & Mathematics with Applications, 109 (2022), 44  crossref
    7. A O Kondyukov, T G Sukacheva, “Non-stationary model of incompressible viscoelastic Kelvin-Voigt fluid of higher order in the Earth's magnetic field”, J. Phys.: Conf. Ser., 1658:1 (2020), 012028  crossref
    8. A. O. Kondyukov, T. G. Sukacheva, “A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:3 (2019), 42–51  mathnet  crossref  elib
    9. A. O. Kondyukov, T. G. Sukacheva, S. I. Kadchenko, L. S. Ryazanova, “Computational experiment for a class of mathematical models of magnetohydrodynamics”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:1 (2017), 149–155  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of Computational and Engineering Mathematics
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :99
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025