Journal of Computational and Engineering Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Comp. Eng. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Computational and Engineering Mathematics, 2016, Volume 3, Issue 1, Pages 61–67
DOI: https://doi.org/10.14529/jcem160107
(Mi jcem54)
 

This article is cited in 9 scientific papers (total in 10 papers)

Computational Mathematics

The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces

G. A. Sviridyuk, N. A. Manakova

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: In order to carry over the theory of linear stochastic Sobolev-type equations to quasi-Banach spaces, we construct a space of differentiable quasi-Sobolev "noises" and establish the existence and uniqueness of a classical solution to the Showalter – Sidorov problem for a stochastic Sobolev-type equation with a relatively $p$-bounded operator. Basing on the abstract results, we study the Barenblatt – Zheltov – Kochina stochastic model with the Showalter – Sidorov initial condition in quasi-Sobolev spaces with an external action in the form of "white noise".
Keywords: Sobolev-type equations; Wiener process; Nelson – Gliklikh derivative; white noise; quasi-Sobolev spaces; Barenblatt – Zheltov – Kochina stochastic equation.
Received: 09.09.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 60H30
Language: English
Citation: G. A. Sviridyuk, N. A. Manakova, “The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces”, J. Comp. Eng. Math., 3:1 (2016), 61–67
Citation in format AMSBIB
\Bibitem{SviMan16}
\by G.~A.~Sviridyuk, N.~A.~Manakova
\paper The Barenblatt – Zheltov – Kochina model with additive white noise in quasi-Sobolev spaces
\jour J. Comp. Eng. Math.
\yr 2016
\vol 3
\issue 1
\pages 61--67
\mathnet{http://mi.mathnet.ru/jcem54}
\crossref{https://doi.org/10.14529/jcem160107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3484593}
\zmath{https://zbmath.org/?q=an:06690894}
\elib{https://elibrary.ru/item.asp?id=25735554}
Linking options:
  • https://www.mathnet.ru/eng/jcem54
  • https://www.mathnet.ru/eng/jcem/v3/i1/p61
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of Computational and Engineering Mathematics
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :129
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024